Ethylene copolymer compositions

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C526S134000, C526S161000, C526S308000, C526S339000, C526S160000, C526S347000, C526S348200, C526S348600

Reexamination Certificate

active

06506866

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a novel ethylene copolymer and a method for producing the same. More particularly, the present invention is concerned with a novel ethylene copolymer comprising a copolymer of ethylene with at least one comonomer selected from the group comprising compounds represented by the formula H
2
C═CHR wherein R represents a C
1
-C
20
linear, branched or cyclic alkyl group or a C
6
-C
20
aryl group, and a C
4
-C
20
linear, branched or cyclic diene, and having a specific density, and having not only a specific molecular weight distribution characteristic but also a specific comonomer content distribution characteristic.
The ethylene copolymer of the present invention has great advantages which have not been provided by conventional ethylene copolymers, i.e., it contains no impurities such as a wax, a gel and the like. In addition both the ethylene copolymer of the present invention and blend compositions therefrom also have excellent properties, such as high impact strength and excellent environmental stress cracking resistance, such that they can be advantageously used for the production of laminate films, blow-molded articles, pipes, coating materials for electric transmission cables, and the like.
Prior Art
Ethylene copolymers are widely used in various application fields, such as the production of films, blow-molded products, pipes and coating materials for electric transmission cables. With respect to any of these applications, it is required that an ethylene copolymer not only contain few impurities, such as wax, gels and the like, but also exhibit excellent properties, such as high impact strength and high environmental stress cracking resistance (hereinafter, frequently referred to as “ESCR properties”). However attempts to vary the molecular structure of a polymer to cause an improvement in one such property often results in a loss of performance in another. For instance polymers exhibiting high stiffness and heat resistance should have high crystallinity and low comonomer content, however this can cause a loss of toughness, ESCR, low optical properties and poor heat seal performance. Similarly for improved polymer processability (low extrusion amp and back pressure and no melt fracture) it is desirable to use polymers having a low molecular weight, and a broad molecular weight distribution with significant levels of long chain branching. However broad molecular weight distribution, especially at low polymer molecular weight, often causes wax buildup on the die, smoke generation on the extruder, and taste and odor problems in the resulting fabricated articles.
It is known that improvement in impact and environmental stress crack resistance of an ethylene copolymer, can be achieved by decreasing the comonomer content of the low molecular weight fraction of the ethylene copolymer to a level as low as possible while increasing the comonomer content of the high molecular weight fraction of the ethylene copolymer to a level as high as possible. It has also been demonstrated (as for example by Zhou et al, Polymer, Vol 24, p. 2520 (1993)) that large strain properties such as toughness, tear, impact and ESCR can also be improved by the presence of “tie molecules” in the resin. High molecular weight molecules with the highest comonomer content (i.e. the highest degree of short chain branching) are responsible for the formation of most of the tie molecules upon crystallization.
Thus it would be highly desirable for a copolymer to have a specific comonomer content distribution characteristic, wherein, in one aspect, the lower the molecular weight of a copolymer fraction in a molecular weight distribution of said copolymer, the lower the comonomer content of the copolymer fraction; and, in the other aspect, the higher the molecular weight of a fraction of said copolymer, the higher the comonomer content of the copolymer fraction.
However, in ethylene copolymers which are produced using a conventional Ziegler-Natta catalyst, it is likely that the lower the molecular weight of a copolymer fraction, the higher its comonomer content. Thus, such conventional ethylene copolymers have a comonomer content distribution which is completely contrary to the above-mentioned desired comonomer content distribution. Therefore, such conventional ethylene copolymers are at a disadvantage with respect to desirable properties, such as improved impact strength and ESCR.
Attempts to maximize toughness, modulus, impact strength and ESCR of ethylene copolymers has resulted in the preparation and use of blend compositions made out of two or more ethylene copolymer components of differing molecular structures. In addition to separately blending selected individual polymer components after their manufacture and isolation (so called “off-line” blending), such compositions can also be prepared by a method in which a copolymerization of ethylene with a comonomer is conducted by a multi-stage polymerization, using a plurality of different polymerization reactors, capable of providing different copolymerization conditions. This allows so called “in reactor” or “in process” production of ethylene copolymers comprising a mixture of a low molecular weight copolymer component, having a low comonomer content, and a high molecular weight copolymer component having a high comonomer content.
Such blend compositions containing solely Ziegler catalyst products are described in a number of patents. For example, Nelson (U.S. Pat. No. 3,280,220, Phillips Petroleum) teaches that a blend of an ethylene homopolymer of low molecular weight (formed in a solution process) and an ethylene/butene-1 copolymer of high molecular weight (formed in a particle forming process) provides higher ESCR and is more advantageous for containers and pipe than other such blends.
Hoblitt et al. (U.S. Pat. No. 3,660,530, the Dow Chemical Company) teaches a method where part of a homopolymer produced after a first reaction step is subjected to 1-butene. The still active catalyst then produces a block copolymer of polyethylene and polymerized butene-1. Both components are then admixed. The resultant blend has improved ESCR properties.
Fukushima et al. (U.S. Pat. No. 4,438,238) disclose blends consisting of components with densities between 0.910 and 0.940 g/cm
3
and broad molecular weight distributions with the polymers having substantially no long chain branches. These blends were found to have processability similar to that of high pressure polyethylene
Bailey et al. (U.S. Pat. No. 4,547,551) teach that ethylene polymer blends of a high molecular weight ethylene polymer, preferably an ethylene/&agr;-olefin copolymer, and a low molecular weight ethylene polymer, preferably an ethylene homopolymer, both preferentially having a narrow molecular weight distribution and low levels of long chain branching, exhibit excellent film properties and a better balance of stiffness and impact and ESCR, than expected for polyethylene of comparable density and flow.
Morimoto et al. (U.S. Pat. Nos. 5,189,106, and 5,260,384) disclose blends consisting of a high molecular weight copolymer in combination with a low molecular weight homopolymer having good processability and excellent low temperature mechanical properties.
Boehm et al., (Advanced Materials 4 (1992) no 3, p 237), disclose the cascade polymerization process in which the comonomer is introduced in the high molecular weight fraction of the polymer resulting in a larger amount of comonomer being present at the same overall density. This in turn results in a polymer composition having improved rigidity-lifetime (failure time) compared to conventional unimodal copolymers. Several patents have also appeared teaching the process to produce such materials in such cascade processes including EP 0 022 376 (Morita et al).
Unexamined Japanese Patent Application Laid-Open Specification Nos. 61-221245 and 61-57638, disclose attempts to increase the comonomer content of high molecular weight copolymer fractions by a method in which a low molecular weight polym

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ethylene copolymer compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ethylene copolymer compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ethylene copolymer compositions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3070417

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.