Chemistry of hydrocarbon compounds – Product blend – e.g. – composition – etc. – or blending process... – Component of indefinite molecular weight greater than 150
Reexamination Certificate
2000-06-19
2002-07-09
Howard, Jacqueline V. (Department: 1764)
Chemistry of hydrocarbon compounds
Product blend, e.g., composition, etc., or blending process...
Component of indefinite molecular weight greater than 150
C585S010000, C585S018000
Reexamination Certificate
active
06417416
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to ethylene-olefin polymers, processes for their production, and uses thereof as low molecular weight liquid or wax-like products.
BACKGROUND OF THE INVENTION
Increasing demand in the oil industry has created a need for a high performance synthetic base oils with low volatility and high oxidative stability. Currently, poly-alpha-olefins (PAO) are used as synthetic base oils but costs are high. This has created a demand for a low cost alternative to PAO such as synthetic hydrocarbons with equivalent or better properties. The present invention is based, in part, on the surprising and unexpected discovery that synthetic base oils may be formulated directly into motor oils or fractionated into different viscosity grade oils with properties equivalent to commercial PAO.
Various prior art publications are available relating to poly-alpha-olefin polymers. Reference may be made to U.S. Pat. Nos. 4,668,834, 4,542,199, 5,446,221, 4,704,491, 4,377,720, 4,463,201, 4,769,510, 4,404,344, 5,321,107, 5,151,204, 4,922,046, 4,794,096, 4,668,834, 4,507,515, and 5,324,800. Many of these prior art patents involve polymerization of ethylene or poly-alpha-olefins using a catalyst combination comprising a transition metal complex and an aluminoxane.
The present invention provides polymers of poly-olefins which have a high viscosity index, low pour point, low cold cranking viscosity, high fire point and excellent oxidation stability.
SUMMARY OF THE INVENTION
It is accordingly an object of the present invention to provide a novel series of ethylene-olefin copolymer and terpolymer compositions useful as base oils for the production of synthetic lubricating oils.
A further object of the invention is to provide a process for the production of copolymers of ethylene and olefins and the resulting polymers which have a high viscosity index, low pour point, and low cold cranking viscosity.
A still further object of the present invention is to provide a process for the preparation of terpolymers of ethylene, an olefin and a third monomeric reactant, which terpolymers have unique characteristics as synthetic base oils.
An even further object of the present invention is to provide a series of novel polymeric products obtained by thermal cracking of the copolymers and terpolymers of the invention and processes for the production therefor.
A still further object of the invention is to provide a series of polymeric products which are the hydrogenated products of the thermal cracking procedure and processes for the production thereof.
A further object of the invention is to provide synthetic base oils for the production of synthetic lubricants.
A further object is to provide novel liquid and wax-like products for the cosmetic, textile, household, and personal care industries.
Further objects and advantages of the present invention will become apparent as the description thereof proceeds.
In satisfaction of the foregoing objects and advantages, the present invention provides a process for the production of an ethylene-olefin copolymer, comprising the steps of:
a) polymerizing ethylene and at least one olefin in the presence of a co-catalyst combination comprising a compound of a transition metal of Group IVb of the Periodic Table and an aluminoxane to produce a copolymer; and optionally,
b) subjecting at least a portion of said copolymer to thermal cracking to produce a cracked hydrocarbon, or hydroisomerizing said copolymer to produce an isomerization hydrocarbon product.
The present invention also provides novel copolymers obtained from the polymerization process and the novel thermally cracked product. The present invention also includes hydrogenation of the polymer obtained from the thermal cracking process to produce a hydrogenated copolymer.
The copolymer produced by the reaction of ethylene and an olefin in the process of the invention may be characterized as follows:
(a) % ethylene of from 50 to 75%;
(b) molecular weight of <2000;
(c) molecular weight distribution of <2.5;
(d) bromine number of <53;
(e) a head to tail molecular structure; and
(f) a pour point of below about 0° C.
In a further embodiment, the present invention also provides a process for the production of a terpolymer by reaction under polymerization conditions of ethylene, at least one olefin monomer different from ethylene, and at least one third monomer comprising an ethenically unsaturated hydrocarbon such as an olefin having a carbon chain length of greater than three, in the presence of a catalyst combination comprising a compound of a transition metal of Group IVb of the Periodic Table and an aluminoxane. Also provided is the novel terpolymer produced as a result of this process. This novel terpolymer may also be thermally cracked and hydrogenated, or hydroisomerized.
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates in one embodiment to a process for producing copolymers of ethylene and an olefin polymer, comprising polymerizing ethylene and one or more olefin monomers having 3 to 20 carbon atoms under polymerization conditions in the presence of a catalyst combination comprising a compound of a transition metal of Group IVb of the Periodic Table and an aluminoxane. In a further embodiment, this obtained copolymer is subjected to thermal cracking or hydroisomerization, and optionally, the cracked polymer is subjected to hydrogenation.
This invention further concerns a process for producing an ethylene-olefin polymer, comprising the steps of: polymerizing ethylene and one or more olefin monomers having 3 to 20 carbon atoms in the presence of a catalyst combination comprising a compound of a transition metal of Group IVb of the Periodic Table, and an aluminoxane, and hydroisomerizing the obtained polymer.
By ethylene-olefin polymer, there is meant a copolymer obtained by reaction of an ethylene monomer and one or more additional olefin monomers of suitable reactivity. The ethylene-olefin polymer may be, for example, a copolymer, a terpolymer, a tetrapolymer, etc., depending on the number of monomers reacted in the process.
In one embodiment of the process of this invention, the starting material to be fed to the polymerization reaction system is a mixture of ethylene (ethene) and one or more olefins having about 3 to 20 carbon atoms. The content of ethylene in the starting material is preferably about 2 to 80 mole %, preferably about 4 to 55 mole %, and the content of the olefin is preferably about 20 to 98 mole %, preferably about 35 to 96 mole %.
Specific examples of the one or more olefins having 3 to 20 carbon atoms which may be used as a starting material in the process of this invention are 1-propene (propylene), 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene, styrene and &agr;-methylstyrene, 2-methyl-1-butene, 2-methyl-1-hexene, 3-methyl-1-butene, 4-methyl-1-pentene, 2-methyl-1-pentene, 2-methyl-1-propene.
The catalyst combinations used in the polymerization processes of the present invention are well known as catalysts for such polymerization reactions. Such catalysts comprise preferably the combination of (a) metallocene compounds which are compounds of a transition metal of Group IVb of the Periodic Table and (b) an aluminoxane.
Such metallocene compounds are preferably tri- and tetravalent metals having one or two hapto &eegr;
5
-ligands selected from the group comprising cyclopentadienyl, indenyl, fluorenyl with the maximum number of hydrogen substituted with alkyl, alkenyl, aryl, alkylaryl, arylakyl or benzo radicals to none. When there are two &eegr;
5
-ligands, they may be the same or different which are either connected by bridging groups, selected from the group comprising, C
1
-C
4
alkylene, R
2
Si, R
4
Si
2
, R
2
Si—O—Si—R
2
, R
2
Ge, R
2
P, R
2
N with R being hydrogen, alkyl or aryl radicals, or the two &eegr;
5
-ligands are not connected. The non-hapto ligands are either halogen or R, there are two or one such ligands for the tetravalency or trivalency transition me
Chien James C. W.
Chiu I-Ching
Heilman William J.
Howard Jacqueline V.
Jenkens & Gilchrist
Pennzoil-Quaker State Company
LandOfFree
Ethylene-alpha-olefin polymers, processes and uses does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ethylene-alpha-olefin polymers, processes and uses, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ethylene-alpha-olefin polymers, processes and uses will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2826893