Ethanolaminephosphate cytidylytransferase gene and promoter

Chemistry: molecular biology and microbiology – Enzyme – proenzyme; compositions thereof; process for... – Transferase other than ribonuclease

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S023200, C536S024100

Reexamination Certificate

active

06777216

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to the fields of genes and promoters. More particularly, the present invention relates to an isolated gene and promoter of the enzyme ethanolaminephosphate cytidylyltransferase.
BACKGROUND OF THE INVENTION
Phosphatidylethanolamine (PE) is an abundant lipid in both eukaryotic and prokaryotic cells. PE is situated primarily on the inner leaflet of the cell membrane where it interacts with inner-membrane proteins (1) or acts as a molecular chaperone and assists in proper protein folding (2). PE also plays an important role in physiological processes such as blood coagulation, platelet activation, cell signalling, membrane fusion, cell cycle progression, cell division, and apoptosis (3-9). Transfer of PE from lipoproteins to platelets induces their activation (3) and PE induces high-affinity binding sites for factor VIII and stimulates its pro-coagulant activity (4). PE is also involved in the thrombotic activity found in some cases of lupus where it further inhibits activated protein C (5). PE is a direct precursor of other lipids and provides ethanolamine moiety for anandamide (a physiological ligand for the cannabioid receptors) and glycosylphospatidylinositol (GPI) membrane anchors for a diverse group of proteins known as proteoglycans.
Distribution of PE in membranes plays a pivotal role during cytokinesis (7). Prior to late telophase, PE becomes exposed on the cell surface at the cleavage furrow, where it regulates the movement of the actin contractile ring and plasma membrane (7). Interestingly, the surface trapping of PE causes cell arrest (10), and the appearance of PE (together with PS) on the cell surface is an early hallmark of apoptosis (8). Products of PE metabolism, fatty acids, diacylglycerols and phosphatidic acid serve a critical role as second messengers in various signalling pathways and PE is an immediate donor of phosphoethanolamine residue linking glycosylphosphatydylinositol (GPI) anchor to proteins (11-14). There exist specialized forms of PE such as plasmalogens and derivatives such as natural cannabinoid anandamide and glycosylated PE (15-17). Plasmalogens play a role in the prevention of oxidation of lipoproteins (16) and constitute a significant portion of total PE in many tissues (18,19). However, despite their relative abundance, the principal biological function of plasmalogens is not firmly established and the understanding of the regulation of their production is surprisingly limited. Their production is severely impaired in the peroxisomal disorders such as Zellweger syndrome, Refsum disease (11) and neurological disorders (21-23). Glycosylated PE is abundant in lipoproteins of diabetics and has been implicated in the promotion of atherosclerosis in those individuals (24).
There are several pathways for the biosynthesis of PE, certain of which form PE from the alteration of other lipids. These include the decarboxylation of phosphatidylserine (PS) by a PS decarboxylase (PSD) and the base-exchange reaction with PS by a PS synthase (PSS) or phosphatydylcholine (PC). The third pathway, the CDP-ethanolamine pathway or Kenedy pathway, synthesizes PE de novo from ethanolamine and diacylglycerols (DAGs). The CDP-ethanolamine pathway includes three enzymatic steps consisting of the phosphorylation of ethanolamine (Etn), the formation of CDP-ethanolamine and pyrophosphate from phosphoethanolamine (P-Etn), and the final formation of PE from the transfer of phosphoethanolamine from CDP-ethanolamine (CDP-Etn) to diacylglycerol (DAG). These three steps are catalyzed by the enzymes ethanolamine kinase (EK), CTP:phosphoethanolamine cytidylyltransferase (ET), and ethanolaminephosphotransferase (EPT), respectively as shown in FIG.
1
.
Little is known about genomic regulation of the biosynthesis of phospholipids. Several control points for the regulation of PE biosynthesis have been suggested. The reaction catalyzed by CTP: ethanolaminephosphate cytidilyltransferase (ET) has been suggested as a major regulatory step in the PE biosynthetic pathway. Considerable effort has been focused on the regulation of genes that encode enzymes in the fatty acid and cholesterol synthesis pathways. Promoters of these genes contain sterol-regulatory elements and are regulated by cholesterol-responsive transcription factors, sterol regulatory element binding proteins (SREBPs). However, lipogenic enzymes are mainly regulated by dietary carbohydrates, and their promoters contain insulin-response elements. The role for SREBPs in the regulation of fatty acid genes has been ascribed as means for cholesterol regulation of membrane phospholipids, typified in phosphatydyl choline production but direct regulation with cholesterol has also been suggested.
Studies on the regulation of genes that encode phospholipid biosynthetic enzymes have lagged behind that of other classes of lipogenic genes, primarily because most phospholipid-biosynthetic enzymes are difficult to isolate owing to their association with membranes. No evidence for direct transcriptional control of phospholipid genes with cholesterol, fatty acids or carbohydrates has yet been produced, but it is possible that these factors may have influence. Future experimentation with a combination of different transgenic models may determine specific genetic links for carbohydrate, cholesterol and phospholipid metabolism. Furthermore, additional links with regulators of lipid metabolism, including the peroxisome proliferator activated receptors (PPARs) and lipoproteins may be found. PPARs are activated by a diverse group of pharmacological ligands, the peroxisome proliferators (e.g., fibrates, troglitazone), which are well known drugs for regulating lipoprotein levels and very important for prevention of atherosclerosis.
Ethanolamine kinase (EK) exists in several isoforms (20,25,26) having both EK and choline kinase (CK) activities. The isolation of two rat cDNA clones for CK/EK has allowed for the characterization of two separate rat genes (27, 28) and two mouse gene products (29). Unlike CK/EK, EPT is responsible for production of PE by transferring phosphoethanolamine from CDP-ethanolamine to DAG (30) and a separate enzyme, cholinephophotransferase (CPT), is responsible for this reaction in the CDP-choline pathway. EPT and CPT are encoded by two separate genes (31,32). The EPT gene was cloned by complementation of an EPT yeast mutant with a yeast genomic library (33). Subsequently, the human cDNA for EPT has been isolated (34). Interestingly, the human EPT protein has broad substrate specificity, and has the ability to form both choline and ethanolamine lipids (34).
CTP: phosphoethanolamine cytidylyltransferase (ET) is one of the most substrate-specific and the most regulatory enzyme in the CDP-ethanolamine pathway (35). Only rat ET protein has been successfully purified and its biochemical properties clearly established (36-38). The rat protein is considered soluble but could localize between the cisternae of the rough ER and the cytosolic space suggesting some associations with membranes (37). Unlike CK/EK and EPT, rat ET only has activity towards ethanolaminephosphate and does not show any affinity for cholinephosphate (38). These findings strongly agree with genetic evidence indicating that ET and CTP: phosphocholine cytidylyltransferase (CT) cDNAs are produced by two different genes (39, 40). ET cDNAs from yeast, human, and rat have been functionally characterized and showed a high degree of homology between sequences (39-41). Neither the mouse ET cDNA nor any ET gene has yet been characterized.
An EST (GenBank™ Accession No. BC003473) encoding 1855 bp of mRNA for the full-length mouse ET was identified, and is highly homologous to rat and human cDNAs, particularly in the proximity of the translation start codon ATG as shown in FIG.
2
. Computer analysis suggests that ET protein possesses a recognition motif MIRNG and two catalytic domains with large internal repetitive sequences in its N-and C-terminal halves; both parts of the sequence contain the CTP-binding mot

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ethanolaminephosphate cytidylytransferase gene and promoter does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ethanolaminephosphate cytidylytransferase gene and promoter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ethanolaminephosphate cytidylytransferase gene and promoter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3307892

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.