Ergonomic customizeable user/computer interface devices

Coded data generation or conversion – Code generator or transmitter – Transmitter for remote control signal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C341S173000, C340S005610, C340S005620

Reexamination Certificate

active

06441770

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to user/computer interface devices, specifically with respect to graphical interfaces. More specifically, the present invention relates to wireless transmissions from an ergonomic remote control device to a base device for control of computer functions and applications.
2. Description of the Art
In recent years, the process of entering certain types of data and control inputs into computer based systems has been significantly simplified. Traditionally, data entry to a computer has been done with a standard computer keyboard. However, for many users, the keyboard proved to be insufficiently mobile and accessible, inconvenient, and time consuming.
The user/computer interface has been simplified by “graphic user interfaces” (GUIs) and “pointing devices.” The user can select an icon from a GUI display to activate the predetermined function or event associated with the icon.
Since GUIs first emerged, alternatives to the keyboard have proven highly desirable for optimum productivity in many applications. Accordingly, auxiliary or keyboard alternative hardware such as light pens, joysticks, trackballs, touch pads, digitizing pads, and the “computer mouse” developed. These new GUI-oriented pointing devices quickly proved to be viable, timesaving alternatives to the keyboard for many types of computer input and control situations. In particular, the mouse has become the single most widely-accepted keyboard alternative input device.
The fundamental operating principle of the mouse relates to the rotation of a spherical trackball carried within the mouse. When the mouse is moved over a flat surface, the trackball, which is partially exposed, freely rotates within the device and generates signals which correspond to pairs of x-axis and y-axis coordinates. The mouse contains means to translate these coordinates into signals to which the attached computer is responsive. Accordingly, when the computer user moves the mouse device across a working surface adjacent to the computer, the cursor indicator on the display screen moves to the location pointed to by the computer user. Also, the computer user's operation of one or more buttons aboard the mouse effects other control functions of the computer and computer display, such as the selection of computer usage event options.
Notwithstanding the contributions of mouse products and other alternative input devices, many computer input and control needs remain unmet by the prior art. The mouse requires a prominent, smooth, flat, horizontal space on the user's desk. In practice, a typical user's desk is crowded and inhibits the space required for mouse operation. Most mouse devices are especially difficult to use when away from traditional office facilities, in mobile or restricted locations.
Users who operate their computers while travelling, or who operate computers in non-office situations find few computer input products that specifically address the needs of laptop and notebook computing. Some mouse type devices have been developed for mobile users. However, the computer user must make special adjustments to clamp-on fittings to attach these products to the computer keyboard. Some of these products must first be physically clamped onto the computer for each work session, then must be physically unclamped, when the work session is over. Also, the computer user must move his/her hand back and forth from keyboard to the clamp-on product to operate it. Another main complaint made by many users and industry analysts is that users' thumbs quickly tire, operating the small trackballs provided on these products.
One drawback of the mouse results from hardwired attachment to the computer. The connecting cord from the mouse to the computer is subject to the same “umbilical” problems associated with cords on any appliance which needs to move about, to operate according to design. Some wireless computer input devices exist, but their need for dedicated horizontal surfaces precludes many potential benefits of wirelessness.
Users with physical impairments often find mouse products difficult to operate. Depending on the physical impairment, both mouse and keyboard computing can be difficult, painful, or impossible for impaired users. For users with arthritis, carpal tunnel syndrome, or tendonitis, mouse usage can be an awkward and painful. There is a recognized need for GUI devices which offer prophylaxis for users with physical impairments and repetitive stress injuries. While successful products serve a variety of needs for these users, high costs and highly specific utility of many such products hinder their widespread acceptance.
Technicians and professionals often have advanced or high-functionality needs. Many of these specialized needs are unmet by traditional desktop mouse-type products, or by products such as the aforementioned mobile computer input products. High costs and highly-specific utility of many such high functionality products also hinder their widespread use.
Another mouse drawback is its' simplex, unidirectional design and operation. No mouse currently implements two-way interaction between controlled computers and input devices. Lack of bidirectionality is better appreciated, if one considers the many new applications and benefits of bidirectionality, such as roaming LAN interaction; security and alarms; mobile signaling and paging; and remote interactive applications.
Computer users have local area network (LAN) and security needs which remain unmet by current input devices. LAN users have connectivity needs which extend beyond their own computer. LANs were created to facilitate resource-sharing of limited resources among multiple users. LAN users often access and connect into one or more LANs, or other accessible computers or network environments. It has been estimated that more than half of all computers in business are attached to a LAN.
In addition, as the computer population grows, security grows more important. Computers increasingly store confidential data, and no mouse products are designed or equipped for individually-assignable security to add to a computing installations' security “shield”.
No shortage of LAN products or security products exist. However, no security-oriented, individually-assignable computer input and control products are available which allow LAN users to conveniently transport and securely operate personal GUI-oriented pointing devices in multiple LAN locations. “Security-oriented users” need to limit access to critical resources, including hardware, software, data and information, networks, etc. As LANs important, to ensure privacy.
The underside of the mouse trackball is susceptible to the introduction of dirt, liquids, or other substances into the body cavity. This vulnerability can lead to equipment failure and shorter product life.
Another drawback of the mouse is that the user may find the “mouse method” of frequently moving his or her hand back and forth from the keyboard to the mouse to be distracting to their train of thought, time consuming, or inconvenient to optimal operational efficiency.
Several inventors have attempted to address some of these aforementioned drawbacks and problems.
For example, U.S. Pat. No. 4,550,250 to Mueller discloses an infrared graphic input device for a computer. A remote infrared light source transmits user input commands to a detector device adjacent to the computer. The device muse operate within a dedicated horizontal, two-dimensional, smooth, flat surface. The detector apparatus operates according to continuous tracking input principles and does not allow for any straying out of equipment detection boundaries.
U.S. Pat. No. 4,578,674 dislcoses a method and an apparatus for controlling the cursor position on a computer display screen. This device uses both infrared and ultrasonic principles for determining the direction and the velocity of motion of a positioning device which is monitored by a control base detector. The device requires a two-dimension

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ergonomic customizeable user/computer interface devices does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ergonomic customizeable user/computer interface devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ergonomic customizeable user/computer interface devices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2951390

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.