Computer graphics processing and selective visual display system – Display peripheral interface input device – Cursor mark position control device
Reexamination Certificate
1999-02-05
2001-07-17
Shalwala, Bipin (Department: 2673)
Computer graphics processing and selective visual display system
Display peripheral interface input device
Cursor mark position control device
C345S156000
Reexamination Certificate
active
06262715
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention generally relates to a computer input means and more specifically concerns a computer mouse having an improved ergonomic configuration and cord attachment that increases input efficiency and reduces or avoids stress problems associated with the long term use of prior art devices. The improvement includes embodiments that may be reversed for alternate right or left handed use; may be easily retrofit to an existing mouse as well as used for OEM embodiments; and may be custom fit to a user's hand.
2. Description of Prior Art
A computer input device in the form of what is commonly referred to as a “mouse” is old and well known, however, they have been found to be inefficient and cause user problems.
Since mouse pointing devices became popular in the mid-1980's with early computers such as the Amiga 500, many frequent users have logged hundreds and thousand of miles of mouse travel. Usage of the prior art devices required the user to hold the mouse controlling hand in an awkward position in order to reach the control buttons. It meant the user's hand had to have a horizontal palm-down attitude with the wrist of the hand lying on a flat surface and the longest dimension of the wrist being in a generally horizontal plan generally parallel to the work surface upon which the devices were being used. The horizontal hand position generally necessary for using a computer-mouse pointing device is detrimental to the hand. The twisting necessary is a strain on the muscles and pressure is put on the carpal tunnel. Typical operation is for the right hand to operate the left mouse button with the index finger, which is the greatest stretch. Further, most computer mouse point devices have that button curved downward toward the left side of the mouse, increasing the stretch necessary to operate the mouse.
The generally small size of mouse pads and mouse work areas provided on keyboard trays forces repositioning of the mouse when trying to move the cursor a long way in a single direction, e.g., to move from one side to the other of the screen. The mouse must be lifted to prevent its tracking mechanism from repositioning during the movement. The flat nature of computer mouses forces lifting by squeezing the sides between the thumb and little or ring fingers, a weak grip. An asymmetrical mouse which attempts to address some of the above problems is not useful for a left-handed person. Hands vary widely in size, making a single mouse size uncomfortable for many of its users. Computer mouses are cheap, and subject to breakage and wear. A custom mouse, inherently expensive, with average translation tracking equipment, would break down and require expensive replacement. Increasing the custom mouse's tracking equipment quality would compound the expense, reducing its marketability.
Another disadvantage of prior art devices is that the cord of most computer mouse pointing devices leaves the front of the mouse horizontally, and is generally made of moderately stiff wire which resists bending with a radius smaller than approximately one inch. The cord tends to bind against obstacles commonly found on the desks or workstations. Examples of obstacles are wire guiding holes in a key board shelf provided for the mouse position, backing plates commonly found on workstation keyboard trays, the computer monitor base, the computer box, speakers, etc. The binding introduces resistance making it difficult to adjust the mouse smoothly.
SUMMARY OF THE INVENTION
The present inventions improve user efficiencies and avoid the problems by features such as changing the mouse grasping attitude of the hand and the wrist away from the conventional generally horizontal (“typewriter”) bent wrist attitude to a more natural and comfortable upright user friendly position with the wrist straight in what may be characterized as a “handshake” position. In this position, the longest dimension of the wrist generally lies in the plane of the hand which plane is more generally vertical and forms a large acute angle to the horizontal. This position not only promotes more efficient operation but also avoids inefficiencies and problems associated with prior art mouse devices.
Input devices with a vertical hand and wrist attitude are known and used in connection with computer games and take the form of gun-like grips (and joystick devices), however, these devices do not include the mouse features such as a control means in the base which moves a computer cursor in a direction or distance proportional to the movement of the base. Rather, these non-mouse input means have different structures functioning in a different manner to produce a different result.
According to the inventions herein the problems and limitations associated with prior art, mouse type computer input devices are overcome by providing a mouse which allows an upright hand position by having a central pedestal with a somewhat rounded D-shaped cross section. The flat side of the D accommodates the first phalange of the thumb, and will be on the left for a right-handed user. The pedestal is a generally conical frustrum with the wide base on the mouse platform, and a knob protrusion at the top. The knob protrusion at the top of the pedestal is positioned to lie in the crook of the hand just above the thumb and index finger. The purpose of the knob is to allow the mouse to be lifted with minimal squeezing, allowing easy repositioning.
The first computer mouse button may be implemented in the form of a lever or flat actuating surfaces generally vertically oriented at the front of the mouse in a position adapted to be under the flat surface of the third phalange of the index and middle fingers. This allows depression of the button by one or both of these fingers, allowing the user to vary the load on the fingers, or to combine strength to accommodate an already weakened finger. The second mouse button is an angled lever to the right and having an upper end somewhat below the upper end of the first to allow natural placement on it of the third phalange of the ring and little fingers, giving the variation and strength advantages of the first mouse button. The pivot of both levers (if levers) are angled so that natural squeezing of the lever is in the direction of finger travel for easiest movement.
The pedestal on the mouse can be made rotatable to move the flat side from the right to the left to support left-handed operation. The actuating levers would flip on their top pivot mechanisms to reverse the positions of the left and right levers so as to place the upper lever under the index and middle fingers of the left hand. Alternatively, the pivots for the first and second computer buttons could be attached to separate annular rings at the top of the pedestal allowing them to rotate in opposite directions 180 degrees each, which, combined with rotating the pedestal brings them to the front again but in reversed positions.
The pedestal could be designed to be customized to an individual by use of a molding process involving expanding material inside a stretchable membrane. This entails a mechanical release of an activating chemical followed by the prospective user gripping the pedestal in a comfortable position while at the same time resisting the expansion until the material solidifies to form a shape for the mouse pedestal contoured to the user's hand. Lever pivots may be suitably incorporated into the core to be set with the shape, or could be arranged with a mechanical adjustment to be made after setting the shape.
An add-on ergonomic mouse attachment using the principles above is adaptable for use with most manufacturers mouses. Computer mouse pointing devices in general have convex smooth upper surfaces with an elongated shape and operating buttons at the front. The pedestal above is adaptable to have a concave base, possibly just a ring at its outer circumference. The ring can be coated with an adhesive for adherence to the mouse. For additional support there is provided a flexible, adh
Kovalick Vincent E.
Lucent Technologies - Inc.
Shalwala Bipin
Sitrick & Sitrick
LandOfFree
Ergonomic computer mouse does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ergonomic computer mouse, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ergonomic computer mouse will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2565622