Pulse or digital communications – Receivers – Particular pulse demodulator or detector
Reexamination Certificate
2000-12-21
2004-09-07
Phu, Phuong (Department: 2631)
Pulse or digital communications
Receivers
Particular pulse demodulator or detector
C375S232000, C375S326000, C375S344000
Reexamination Certificate
active
06788749
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to a receiver for restoring a data signal from a data input signal, comprising a data detector and a control signal generator coupled to the data detector for controlling one or more loops in the receiver, such as an automatic gain control, an equalizer adaptation and/or a timing recovery loop.
The present invention also relates to a data detector for application in the receiver.
Such a receiver is known from U.S. Pat. No. 5,398,259 disclosing a decision feedback equalizer for canceling CW interference. In particular the equalizer is incorporated in a receiver of a QPSK (Quadrature Phase Shift Keyed) system, wherein an input signal is demodulated and converted and then fed into the interference canceller. The canceller includes a feedforward and a feedback equalizer filter, whose respective filter outputs are subtracted and fed to a threshold decision circuit. The decision circuit makes a decision in favor of a logic
1
or
0
, and across the decision circuit an error detector is provided for producing an error signal for control of the feedforward and feedback equalizer filters. A correlation is detected between two tap signals of the forward filter, and is compared with a threshold. At the instant the detected correlation becomes lower than the threshold, all tap-gain control circuits are frozen, i.e. they are caused to hold their amplitude values which were attained at that instant. Determination of a correlation inevitably takes some time. During this time decision errors can have a negative impact on the control loops. This impact can be severe, and could even include misconvergence of the control loops in situations when bit errors are likely, such as in conditions of low signal-to-noise ratio.
BRIEF SUMMARY OF THE INVENTION
It is an object of the present invention to prevent this negative impact. More specifically it is an object of the present invention to provide a receiver which is capable of taking instantaneous measures without unnecessary delay at the very moment a faulty decision is taken by the detector.
Thereto the receiver according to the invention is characterized in that the receiver comprises erasure means for generating an instantaneous erasure information signal in case the data input signal to be restored falls within an erasure zone, which erasure means are coupled to the control signal generator for essentially instantaneous use of the instantaneous erasure information for loop control.
Similarly the data detector according to the invention is characterized in that it comprises erasure means for generating an instantaneous erasure information signal in case the data input signal to be restored falls within an erasure zone, which erasure means are to be coupled to the control signal generator for essentially instantaneous use of the instantaneous erasure information for loop control.
It is an advantage of the receiver according to the present invention that erasure information indicating that a relevant input decision variable lies within an erasure zone provides instantaneous information about the degree of uncertainty involved in taking the decision. This information can easily be derived and is often provided for free by the detector, without additional hardware and without the detector output signal being necessary therefor. In fact erasure information is extracted in the heart of the bit-detector and is thus inherently reliable, which results in reliable bit decisions used for more robust control of the various control loops relative to techniques based on other kinds of signals.
By means of the instantaneously available erasure information an undesired drifting of the control loops from their desired settings caused by a faulty decision can be prevented. In practice if a high degree of uncertainty is associated with a bit decision taken by the detector a final decision can be postponed until a higher degree of certainty can be reached for giving a more reliable other bit decision. Thus the final decision is more reliable and where control information is derived from this final decision the control information is more reliable as well. Advantageously the aforementioned erasure information can be used for taking binary decisions, ternary decisions, generally multilevel decisions in both amplitude and/or multiphase modulation techniques, such as 4-phase, 8-phase, 16 point QAM, 16 point CCITT V0.29, 256 point QAM, QPSK, MSK offset QPSK etcetera.
An embodiment of the receiver according to the invention is characterized in that the control signal generator is arranged such that during periods of erasure the one or more loops are controlled by respective control signals, which are mainly kept constant in time. By thus freezing these loops they do not suffer from erroneous decisions taken by the detector.
Another embodiment of the device according to the invention is characterized in that during periods of erasure an erasure zone which is usually defined by a pair of erasure detection thresholds, is brought back to a single common threshold. By returning to unbiased decisions during erasure periods a more reliable decision can be derived from the detector. Whereas after the erasure period the original erasure detection having an erasure zone can be restored. For binary signals the single common threshold can be zero.
A further embodiment of the device according to the invention is characterized in that the instantaneous erasure information signal is an erasure flag which is only set during periods of erasure, or a little longer depending on the employed loop control technique. This embodiment requires essentially no overhead in the decision taking circuit, such as the decision feedback equalizer.
A still further embodiment of the device according to the invention is characterized in that the decision circuit comprises a dual decision feedback equalizer comprising two slicers having thresholds being anti-symmetric relative to a median threshold value.
Still another embodiment of the receiver according to the invention is characterized in that the receiver comprises two error detectors connected in a parallel arrangement across the respective slicers for providing error signals e[
1
,k] and e[
2
,k] for multiplication by respective slicer output bit decisions a[
1
,k] and a[
2
,k], which may optionally be delayed. Advantageously several practical embodiments are feasible now. In fact a[
1
,k] and/or a[
2
,k] may be delayed whereby the delayed bit decisions can be taken from either one of the slicer outputs. If at a delayed moment
1
=k−i an erasure occurs a[k−i] will be zero and then driving one or more of the control loops with the cross product e[k]*a[k−i] will not affect the control loop during the erasure period.
One further embodiment of the receiver according to the invention is characterized in that the error signals are being combined according to:
e[k
]=0.5
{e
[
1
,
k]+e
[
2
,
k]}.
In this combined error signal the constituent decision errors will be less noticeable, such that these errors will have a smaller worst case impact on the control of the control loops.
A still further embodiment of the detector according to the invention is characterized in that the erasure means comprises:
two cascaded differential circuits having respective inputs and outputs, whereby two corresponding inputs of each of the differential circuits are coupled to a data input terminal, whereas and the other inputs are coupled to an upper and a lower erasure threshold terminal respectively; and
a summing device coupled to the outputs such that at the output of the summing device a ternary erasure information signal is available.
It is an advantage of this still further detector embodiment that at an early moment in the bit decision making process the probability data concerning the data input level is available for later use, such as in the control
Bergmans Johannes Wilhelmus Maria
Voorman Johannes Otto
Wong-Lam Ho Wai
Koninklijke Philips Electronics , N.V.
Phu Phuong
Zawilski Peter
LandOfFree
Erasure based instantaneous loop control in a data receiver does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Erasure based instantaneous loop control in a data receiver, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Erasure based instantaneous loop control in a data receiver will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3190543