Supports: racks – Special article – Electrically powered
Reexamination Certificate
2001-06-29
2003-02-11
Chin-Shue, Alvin (Department: 3634)
Supports: racks
Special article
Electrically powered
Reexamination Certificate
active
06516954
ABSTRACT:
FIELD OF THE INVENTION
The instant invention relates to electronic equipment racks and, more particularly, to an improved equipment rack for use in data centers and the like that includes integrated cooling ducts and power distribution features. The invention has particular applicability to telecommunications equipment racks and cabinets constructed in accordance with the EIA/TIA standard EIA-310-D (“cabinets, Racks, Panels and Associated Equipment” (ANSI/EIA/310-D-92)).
BACKGROUND AND SUMMARY OF THE INVENTION
Equipment racks and cabinets are used extensively in data communication facilities and the like for the purpose of enabling electronic equipment to be mounted therein. Such racks typically include a rack face which enables the equipment to be mounted such that a bracket on the front of the equipment is secured, using fasteners or the like, to the front face of the rack.
Data center processing equipment, such as telecommunications equipment, Web servers and the like, are typically mounted in a series of such racks or cabinets within the data center. Such equipment also typically draws air in through the front of the equipment for cooling purposes. Data center processing equipment has been getting smaller over the years. For example, machines with the same amount of computing power that used to measure six or more inches in height are now contained in 1.75 inches.
The size and shape of such processing equipment has become fairly standardized. The structure of racks and cabinets for use in mounting the processing equipment has also become fairly standardized in several respects. For example, in traditional computer rooms and data communication facilities, racks are typically provided that have the following common characteristics:
19 inch or 23 inch width (nominal);
2 rail or four post designs;
varying depth of 4 post racks or cabinets; and mounting systems to accommodate equipment in height multiples of 1.75 inches (one “rack unit”), typically pre-drilled and tapped holes for screw-mounting equipment.
These common characteristics are defined in EIA/TIA standard EIA-310-D (“cabinets, Racks, Panels and Associated Equipment” (ANSI/EIA/310-D-92)).
In view of this accepted standard for racks, cabinets and equipment, there are a substantial number of processing machines, such as servers for use in connection with the Internet, that are 1.75 inches in height. Such equipment is known as “1U equipment”. In conventional rack mounting systems, 1.75 inches is known as “one rack unit”, or the smallest unit of measure for equipment mounting locations within the vertical space of one data rack. This height (1U) corresponds to the standard mounting distance in EIA-spec telecommunications racks, and is the smallest unit of measure when discussing data center footprint of computing machines.
EIA-spec telecommunications racks and the like include predefined screw or bolt holes in the frame of the rack for enabling 1U equipment to be mounted thereon in a stacked manner. The mounting holes in such EIA-spec racks are positioned such that, when mounted, each piece of equipment is in contact, or very close to being in contact, with adjacent pieces of equipment. In other words, such EIA-spec racks are designed such that there is substantially no space between each piece of equipment.
There are several problems associate with the use of EIA-spec telecommunications racks, and other similar racks. For example, when 1U equipment is mounted vertically with no space between adjacent pieces of equipment, there is a substantial amount of heat conducted up the stack of equipment from one machine to another. This phenomenon is known as the “chimney effect.” Most of this heat energy is conducted up through the stacked equipment due to the proximity of the equipment cases (touching or very nearly touching). As a result, data centers that house such racks must constantly provide sufficient cooling for the equipment to prevent damage or malfunction of the equipment due to this excess heat. However, the design of typical racks and cabinets do not facilitate easy cooling of the equipment when densely mounted in rack or cabinets. While racks with integral cooling ducts have been provided in the past for certain application, such prior art racks have not been suitable or convenient for use in communications facilities having a large number of pieces of 1U equipment or the like. In addition, such prior art racks have not facilitated easy, efficient and convenient power distribution between various pieces of equipment and between various racks. As a result, power cables and the like are often not provided in a neat, orderly and secure fashion and, as a result, accidental power loss can result.
Equipment density in telecommunications closets, telephone switch sites, and data centers is increasing rapidly. As the equipment density increases, so do the power and cooling requirements. It is very difficult to distribute cool air effectively to all of the equipment in a densely populated data center. It is also difficult to distribute power to all of the equipment in a neat, orderly and efficient manner.
Thus, a need exists for an improved racking system that improves cooling and power distribution for equipment mounted therein. The present invention addressed this need by providing a racking system that allows for even distribution of cool air to all equipment without the need for intrusive duct-work or other common spot-cooling solutions by combining the rack and HVAC ducting footprint into the footprint previously occupied by only the conventional rack mounting system. The racking system of the present invention also simplifies power distribution between the equipment in a rack and between adjacent racks.
In accordance with a main aspect of the instant invention, a rack element is provided for use in connection with mounting of electronic equipment. The rack element includes a front portion, a rear portion, and a pair of side portions defining an interior of the rack element therebetween. The interior of the rack element is partitioned into a front section and a rear section, wherein the front section defines an air duct and the rear section defines a power distribution section. The air duct has an opening at one end thereof for receiving cooling air from an air conditioning system, and the front portion of the rack element includes a plurality of openings therein for enabling the cooling air from the duct to exit therethrough for cooling equipment mounted thereon. The power distribution section includes an opening at one end thereof for enabling power cables to enter the power distribution section for powering equipment when mounted on the rack element.
In accordance with another aspect of the invention, the plurality of openings on the front portion of the rack element are substantially equally spaced along substantially the entire front portion of the rack. In addition, the rear portion of the rack preferably includes openings that enable power distribution elements to be inserted into the power distribution section of the rack element.
In accordance with a further aspect of the invention, the rack element is configured for use in connection with EIA-spec rack systems and equipment that is one rack unit (1U) in height.
In accordance with another aspect of the invention, the rack element further includes at least one opening in each of the pair of side portions for enabling mounted equipment power cords to be passed therethrough and into the power distribution section of the rack element. In addition, the rack element preferably includes a second opening in each of the pair of side portions of the rack element for providing a rear mount location in the power distribution section for mounting side-venting equipment.
In accordance with a further aspect of the invention, the rack element includes a third opening in each of the pair of side portions of the rack element adjacent a lower end thereof which defines a power distribution channel for distributing power from one rack element to another similar rack element.
The
Chin-Shue Alvin
Nixon & Vanderhye P.C.
Purol Sarah
ServerVault Corp.
LandOfFree
Equipment rack with integral HVAC and power distribution... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Equipment rack with integral HVAC and power distribution..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Equipment rack with integral HVAC and power distribution... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3129886