Equine herpesvirus vaccine

Drug – bio-affecting and body treating compositions – Antigen – epitope – or other immunospecific immunoeffector – Virus or component thereof

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S202100, C424S204100, C424S205100, C424S206100, C424S278100, C424S280100, C435S173300, C435S235100, C435S236000, C435S237000, C435S238000

Reexamination Certificate

active

06803041

ABSTRACT:

BACKGROUND
Respiratory diseases are a major cause of economic loss to the equine industry. Equine herpesviruses (EHV), equine influenza viruses (EIV), and the bacterium,
Streptococcus equi
are pathogens most often associated with infectious respiratory disease in horses. World wide, equine herpesviruses are major pathogens associated with morbidity in horses as a result of respiratory infection. Both equine herpesvirus type 1 (EHV-1) and type 4 (EHV-4) can cause respiratory disease. EHV-1 is also associated with abortions and neurological disease. Because of the high degree of mobility and the international nature of the equine industry, efficacious vaccines are needed to reduce the disease and control the spread of these pathogens.
A number of EHV vaccines are available commercially. None, however, generally is capable of conferring long lasting protection and most require frequent booster immunizations to achieve a significant level of protection against EHV infection. The most commonly recommended route of administration is via intramuscular injection, despite the respiratory system being a primary site of the infection in many instances. In addition, some of the commercial vaccines have been reported to cause undesirable side effects. A number of attempts at developing a recombinant vaccine for EHV have been reported. This approach, however, has not yet resulted in the introduction of a commercial recombinant vaccine which has achieved widespread acceptance.
Literature reports have consistently documented a high degree of variability in the capability of vaccines based on EHV-1 strains to provide cross protection against infection by EHV-4 strains. While vaccines based on EHV-4 strains have shown a greater propensity to provide some protection against both EHV-1 and EHV-4 strains, cross protection based on EHV-4 strains has also been reported to show variability.
There is accordingly a continuing need to develop additional vaccines capable of protecting horses against diseases associated with EHV-1 and/or EHV-4. It would also be advantageous to develop vaccine that is effective against EHV-1 and/or EHV-4 which could be administered via intranasally as well as via parenteral methods (e.g., intramuscularly, subcutaneously or intravenously).
SUMMARY
The present invention relates to immunogenic compositions which include an inactivated form of EHV-1. In particular, the application provides a vaccine for protecting horses against diseases associated with EHV-1 and/or EHV-4. The vaccine includes inactivated EHV-1 (e.g., chemically inactivated EHV-1 KyA virus) and typically also includes an adjuvant. The vaccine may also include other components, such as preservative(s), stabilizer(s) and antigens against other equine pathogens. Typically, the antigens against other equine pathogens are also present in an inactivated form, such as inactivated forms of EHV-4 and inactivated strains of equine influenza virus (“EIV”). For example, the vaccine may be a combination vaccine which includes inactivated forms of A1 and/or A2 strains of equine influenza virus in addition to the inactivated EHV-1. Examples of suitable antigens against EIV include inactivated EIV A1 virus strain A/EQ1/Newmarket/77, inactivated EIV A2 virus strain Newmarket/2/93, and inactivated EIV A2 virus strain Kentucky/95.
The terms “vaccine” and “immunogenic composition” are defined herein in a broad sense to refer to any type of biological agent in an administratable form capable of stimulating an immune response in an animal inoculated with the vaccine. For purposes of this invention, the vaccine (immunogenic composition) typically includes the viral agent in an inactivated form. Vaccines in general may be based on either the virus itself or an immunogenic (antigenic) component of the virus. Herein, the term “protection” when used in reference to a vaccine refers to the amelioration (either partial or complete) of any of the symptoms associated with the disease or condition in question. Thus, protection of horses from EHV by the present vaccines generally results in a diminishing of virus shedding and/or one or more of the clinical symptoms associated with infection by EHV-1 and/or EHV-4 (e.g., pyrexia, nasal discharge, conjunctivitis, coughing, dyspnea, depression, and antibiotic treatment required for secondary bacterial infection).
In one embodiment, the present immunogenic compositions include a chemically inactivated form of EHV-1. Vaccines which include chemically inactivated EHV-1 KyA virus are particularly desirable. A variety of chemical inactivating agents known to those skilled in the art may be employed to inactivate the virus. Ethylenimine and related derivatives, such as binary ethylenimine (“BEI”) and acetylethylenimine, are examples of suitable chemical inactivating agents for use in inactivating the EHV-1 virus. Other chemical inactivating agents, e.g., beta-propiolactone or aldehydes (such as formaldehyde and glutaraldehyde), can also be used to inactivate the virus.
The present vaccines generally include an adjuvant which desirably may have bioadhesive properties, particularly where the virus is designed to be capable of intranasal administration. Examples of suitable adjuvants include cross-linked olefinically unsaturated carboxylic acid polymers, such as cross-linked acrylic acid polymers. As used herein the term “cross-linked acrylic acid polymer” refers to polymer and copolymers formed from a monomer mixture which includes acrylic acid as the preodominant monomer in the mixture. Examples of suitable cross-linked acrylic acid polymers include those commercially available under the tradenames Carbopol® 934P and Carbopol® 971 (available from B. F. Goodrich Co., Cleveland, Ohio). One particularly suitable adjuvant for use in the present vaccines is a cross-linked acrylic acid polymer having a Brookfield viscosity of no more than about 20,000 cPs (as measured at 20 rpm as a 1.0 wt. % aqueous solution at pH 7.5). Where a bioadhesive adjuvant is desired, it may be advantageous to utilize an adjuvant which has a bioadhesive property of at least about 50 dynes/cm2 as measured between two pieces of freshly excised rabbit stomach tissue (as determined by the procedure described in U.S. Pat. No. 4,615,697).
Methods for protecting horses against diseases associated with EHV-1 and/or EHV-4 which include administering a vaccine containing inactivated EHV-1 to the horses. The vaccine can be administered using a variety of methods including intranasal and/or parenteral (e.g., intramuscular) administration. In one embodiment of the method, the inactivated EHV-1 containing vaccine is first administered intramuscularly one or more times (e.g., at intervals of 2-4 weeks), followed by administration of the vaccine at least once intranasally (e.g., 2-4 weeks after the last parenteral administration of vaccine). The vaccine is advisedly administered to horses that are 6 months or older. Ideally, all horses in a given herd are vaccinated annually in order to protect against the spread of respiratory symptoms of the disease.
A method of producing an equine herpesvirus vaccine is also provided. The method typically includes inoculating simian cells with EHV-1 virus, e.g., with EHV-1 KyA virus. The inoculated simian cells are incubated, generally at least until CPE is observed (commonly after 24 to 120 hours at 36° C.), and then the EHV-1 virus is harvested from the incubated cells (e.g., by decanting and filtering the culture fluids). The harvested virus-containing fluids can be treated with a chemical inactivating agent, such as binary ethylenimine, to form inactivated EHV-1 virus. Typically, the inactivated virus is further processed, e.g., by concentration and blending with other components, to produce a commercial formulation. For example, the fluids containing the inactivated virus may be concentrated and blended with an adjuvant and/or antigen(s) to one or more other equine pathogens.
The present application is also directed to a kit which includes in combination, (1) a dispenser capable of administering a vaccin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Equine herpesvirus vaccine does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Equine herpesvirus vaccine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Equine herpesvirus vaccine will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3307472

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.