Cleaning and liquid contact with solids – Processes – Work handled in bulk or groups
Reexamination Certificate
2000-09-28
2002-08-13
Coe, Philip (Department: 1746)
Cleaning and liquid contact with solids
Processes
Work handled in bulk or groups
C134S030000, C134S032000
Reexamination Certificate
active
06431187
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to cleaning systems used in industrial settings for, typically, the cleaning of parts after manufacturing processes have been completed.
2. Description of the Prior Art
Cleaning of parts is an essential step in the manufacturing process. For example, during the manufacture and machining of parts, surfaces of the parts may retain coatings of industrial chemicals, and/or the parts may have geometries which harbor chips or other solid debris. In order to clean parts of coatings and debris, cleaning systems are utilized. In a typical cleaning machine, a wash, rinse and dry cycle are provided. During the wash cycle a pressurized wash solution is sprayed forcefully onto the parts, and the parts are also passed periodically through a bath of the wash solution. During the rinse cycle, the parts are sprayed with a rinse solution and passed through a bath of the rinse solution. During the drying cycle, the parts are subjected to blowing of air. Some prior art cleaning systems are known to incorporate filtration for the wash and rinse cycles and to have programmable controller (referred to most often, and referred to herein, as “CPU”, and sometimes as “PLC”) control of the cycling. These cleaning systems are also known to provide parts basket rotation.
Unfortunately, multi-basket prior art cleaning systems suffer from a fixed location spray head assembly which only effectively cleans the parts closest thereto. Therefore, any particular part is cleaned best only periodically when the basket rotates past the spray head assembly, and, unfortunately, the spray directly strikes the same side of the basket each time as this side passes the spray head assembly with each revolution. These cleaning systems further suffer from single cyclic rotary movement of the baskets which tends to limit the efficacy of passage through the bath, be that the wash solution or the rinse solution. Lastly, these cleaning systems suffer from cross-feed of the wash and rinse solutions due to remnants thereof remaining in the common plumbing lines when cycling is undertaken. Accordingly, the wash tank will become diluted in time, and, in time, the rinse tank will become contaminated by the wash solution, resulting in frequent solutions changing. Cross-solution contamination necessitates changing before the solution would have otherwise failed in use without cross-contamination occurring.
Accordingly, what remains needed in the art is a cleaning system which provides simultaneous epicycloidic (multi-cyclic) movement of the parts to be cleaned, rotating spray which synchronously follows the rotation of the parts, and a purge system for vacating solution the from the common plumbing of a current cycle before commencement of the next cycle.
SUMMARY OF THE INVENTION
The present invention is an industrial parts cleaning system including immersion and spraying which provides epicyclic parts movement (a plurality of revolutions per rotation), rotating spray which synchronously follows the parts rotation, and a purge system for evacuating from the common plumbing the respective wash or rinse solution of a current cycle before commencement of the next cycle.
The cleaning system according to the present invention includes, generally, a housing, a rinse tank for holding-rinse solution, a wash tank for holding wash solution, a process tank, a parts carrier including at least one support frame for supportably receiving parts to be cleaned, an epicycloidic drive mechanism for providing a plurality of revolutions per rotation of each support frame, a central spray system for providing rotatively synchronous spray onto each respective support frame, plumbing for selectively interconnecting the rinse tank, wash tank, process tank and the central spray system, a source of heating for the wash solution and the rinse solution, an air dry nozzle array, a source of pressurized air for the nozzle array, and a purge system for purging the common plumbing between cycles.
The parts carrier and epicycloidic drive mechanism are characterized as follows.
A hollow support shaft is nonrotatably connected with the sidewalls of the process tank, wherein left and right end orifices thereof are connected, respectively, to the plumbing. The support shaft is provided with a plurality of holes regularly spaced along its length. A hollow driven shaft is concentrically centered on and mounted to the support shaft by a pair of sleeve bearings whereby the driven shaft is rotatable with respect to the support shaft.
A prime mover, such as an electric motor and a gear reduction drive unit therefor, has a drive gear situated on a side of the process tank. A driven gear is gearingly interfaced with the drive gear and is fixedly mounted to the driven shaft, whereby when the prime mover is actuated, the driven shaft responsively rotates. At the opposite end of the driven shaft is a sun gear fixedly mounted with respect to the sidewall of the process tank in concentric relation to the support shaft.
The parts carrier includes at least one support frame, preferably three, which interfaces with removable parts holders, such as for example baskets. Each parts carrier further includes right and left connector plates which are fixedly connected in a radially disposed relation to the driven shaft. Each support frame is rotatably connected at either end to the right and left connector plates. One end of each support frame, opposite the drive and driven gears, is provided with a fixedly connected planetary gear which is gearingly interfaced with the sun gear. Accordingly, when the prime mover is actuated, the driven shaft rotates, each support frame rotates with the rotation of the driven shaft, and as a result of the sun-planetary interaction, also simultaneously revolves on the axis of its respective planetary gear, thereby providing an epicycloidic movement of each support frame.
The central spray system is characterized as follows.
The support shaft receives rinse or wash solution into the central chamber thereof and the pressure thereof causes passage through the plurality of holes and into the annular chamber formed between the support and driven shafts. With the annular chamber pressurized by the solution, the solution vigorously sprays radially outwardly through axially arranged sets of regularly spaced spray apertures which are disposed so as to radially face each support frame. For example, where there are three support frames, which is preferred, each support frame is provided with a respective set of spray apertures.
Accordingly, when the plumbing system is delivering either wash or rinse solution into the process tank, a bath of the solution has been provided and the epicycloidic drive mechanism is actuated, the support frames are periodically immersed in the bath and the solution sprays out through the sets of spray apertures continuously upon its respectively facing support frame, wherein the spray encounters all sides axially as each support frame revolves (and, consequently, whatever parts are supported by the support frames).
As a result of the epicycloidic movement of the support frames, the parts are continually jostling with each other, while being constantly exposed to solution spray, and a rotating/revolving movement through the solution bath is provided, the combination of which providing superb cleaning of the parts carried by the support frame.
Further, upon conclusion of either the rinse or wash cycles, pressurized air is selectively introduced into the common plumbing to force solution of the former cycle back toward its respective tank, prior to commencement of the next cycle. Accordingly, there is no mixing of the rinse and wash solutions during cycle change, and, therefore, the wash and rinse solutions have a maximal extended lifetime before changing is necessitated by contamination from the parts (as opposed to being necessitated because of solution cross-contamination).
Accordingly, it is an object of the present invention to provide a cleaning system, wherei
Coe Philip
Keefe Peter D.
LandOfFree
Epicycloidic inductrial cleaning system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Epicycloidic inductrial cleaning system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Epicycloidic inductrial cleaning system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2906988