Enzymes for the detection of specific nucleic acid sequences

Chemistry: molecular biology and microbiology – Enzyme – proenzyme; compositions thereof; process for... – Hydrolase

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S091100

Reexamination Certificate

active

06759226

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to novel enzymes designed for direct detection, characterization and quantitation of nucleic acids, particularly RNA. The present invention provides enzymes that recognize specific nucleic acid cleavage structures formed on a target RNA sequence and that cleave the nucleic acid cleavage structure in a site-specific manner to produce non-target cleavage products. The present invention provides enzymes having an improved ability to specifically cleave a DNA member of a complex comprising DNA and RNA nucleic acid strands.
BACKGROUND OF THE INVENTION
In molecular medicine, a simple and cost-effective method for direct and quantitative RNA detection would greatly facilitate the analysis of RNA viruses and the measurement of specific gene expression. Both of these issues are currently pressing problems in the field. Despite this need, few techniques have emerged that are truly direct. PCR-based detection assays require conversion of RNA to DNA by reverse trinscriptase before amplification, introducing a variable that can compromise accurate quantification. Furthermore, PCR and other methods based on exponential amplification (e.g., NASBA) require painstaking containment measures to avoid cross-contamination, and have difficulty distinguishing small differences (e.g., 2 to 3-fold) in quantity. Other tests that directly examine RNA suffer from a variety of drawbacks, including time consuming autoradiography steps (e.g., RNase protection assays), or overnight reaction times (e.g., branched DNA assays). With over 1.5 million viral load measurements being performed in the U.S. every year, there is clearly an enormous potential for an inexpensive, rapid, high-throughput system for the quantitative measurement of RNA.
Techniques for direct, quantitative detection of mRNA are vital for monitoring expression of a number of different genes. In particular, levels of cytokine expression (e.g., interleukins and lymphokines) are being exploited as clinical measures of immune response in the progression of a wide variety of diseases (Van Deuren et al., J. Int. Fed. Clin. Chem., 5:216 [1993], Van Deuren et al., J. Inf. Dis., 169:157 [1994], Perenboom et al., Eur. J. Clin. Invest., 26:159 [1996], Guidotti et al., Immunity 4:25 [1996]) as well as in monitoring transplant recipients (Grant et al., Transplantation 62:910 [1996]). Additionally, the monitoring of viral load and identification of viral genotype have great clinical significance for individuals suffering viral infections by such pathogens as HIV or Hepatitis C virus (HCV). There is a high correlation between viral load (i.e., the absolute number of viral particles in the bloodstream) and time to progression to AIDS (Mellors et al., Science 272:1167 [1996], Saag et al., Nature Medicine 2:625 [1996]). For that reason, viral load, as measured by quantitative nucleic acid based testing, is becoming a standard monitoring procedure for evaluating the efficacy of treatment and the clinical status of HIV positive patients. It is thought to be essential to reduce viral load as early in the course of infection as possible and to evaluate viral levels on a regular basis. In the case of HCV, viral genotype has great clinical significance, with correlations to severity of liver disease and responsiveness to interferon therapy. Furthermore, because HCV cannot be grown in culture, it is only by establishing correlations between characteristics like viral genotype and clinical outcome that new antiviral treatments can be evaluated.
While the above mentioned methods have been serviceable for low throughput, research applications, or for limited clinical application, it is clear that large scale quantitative analysis of RNA readily adaptable to any genetic system will require a more innovative approach. An ideal direct detection method would combine the advantages of the direct detection assays (e.g., easy quantification and minimal risk of carry-over contamination) with the specificity provided by a dual oligonucleotide hybridization assay.
Many of the methods described above rely on hybridization alone to distinguish a target molecule from other nucleic acids. Although some of these methods can be highly sensitive, they often cannot quantitate and distinguish closely related mRNAs accurately, especially such RNAs expressed at different levels in the same sample. While the above-mentioned methods are serviceable for some purposes, a need exists for a technology that is particularly adept at distinguishing particular RNAs from closely related molecules.
SUMMARY OF THE INVENTION
The present invention relates to novel enzymes designed for direct detection, characterization and quantitation of nucleic acids, particularly RNA. The present invention provides enzymes that recognize specific nucleic acid cleavage structures formed on a target RNA sequence and that cleave the nucleic acid cleavage structure in a site-specific manner to produce non-target cleavage products. The present invention provides enzymes having an improved ability to specifically cleave a DNA member of a complex comprising DNA and RNA nucleic acid strands.
For example, the present invention provides DNA polymerases that are altered in structure relative to the native DNA polymerases, such that they exhibit altered (e.g., improved) performance in detection assays based on the cleavage of a structure comprising nucleic acid (e.g., RNA). In particular, the altered polymerases of the present invention exhibit improved performance in detection assays based on the cleavage of a DNA member of a cleavage structure (e.g., an invasive cleavage structure) that comprises an RNA target strand.
The improved performance in a detection assay may arise from any one of, or a combination of several improved features. For example, in one embodiment, the enzyme of the present invention may have an improved rate of cleavage (k
cat
) on a specific targeted structure, such that a larger amount of a cleavage product may be produced in a given time span. In another embodiment, the enzyme of the present invention may have a reduced activity or rate in the cleavage of inappropriate or non-specific structures. For example, in certain embodiments of the present invention, one aspect of improvement is that the differential between the detectable amount of cleavage of a specific structure and the detectable amount of cleavage of any alternative structures is increased. As such, it is within the scope of the present invention to provide an enzyme having a reduced rate of cleavage of a specific target structure compared to the rate of the native enzyme, and having a further reduced rate of cleavage of any alternative structures, such that the differential between the detectable amount of cleavage of the specific structure and the detectable amount of cleavage of any alternative structures is increased. However, the present invention is not limited to enzymes that have an improved differential.
In a preferred embodiment, the enzyme of the present invention is a DNA polymerase having an altered nuclease activity as described above, and also having altered synthetic activity, compared to that of any native DNA polymerase from which the enzyme has been derived. It is especially preferred that the DNA polymerase is altered such that it exhibits reduced synthetic activity as well as improved nuclease activity on RNA targets, compared to that of the native DNA polymerase. Enzymes and genes encoding enzymes having reduced synthetic activity have been described (See e.g., Kaiser et al., J. Biol. Chem., 274:21387 [1999], Lyamichev et al., Prot. Natl. Acad. Sci., 96:6143 [1999], U.S. Pat. Nos. 5,541,311, 5,614,402, 5,795,763 and U.S. patent application Ser. No. 08/758,314, incorporated herein by reference in their entireties). The present invention contemplates combined modifications, such that the resulting 5′ nucleases are without interfering synthetic activity, and have improved perform

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Enzymes for the detection of specific nucleic acid sequences does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Enzymes for the detection of specific nucleic acid sequences, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Enzymes for the detection of specific nucleic acid sequences will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3219935

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.