Enzyme-treated protein-containing food and method for...

Food or edible material: processes – compositions – and products – Fermentation processes – Material is mammal or fowl derived

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S018000, C426S032000

Reexamination Certificate

active

06383533

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to foods, including food materials and processed food products, which contain a novel enzyme-treated protein, methods for producing the foods, and an enzyme preparation for producing the foods. In the present invention, the enzymes transglutaminase and oxidoreductase are used for protein modification. Optionally, a substrate of an oxidoreductase, a protein partial hydrolysate, milk protein and/or a thiol group-containing material, may be used in the modification, if desired.
The two enzymes may be used during the general production processes of a variety of foods, and the enzymes can also be used in the form of enzyme preparation for the modification of the protein in foods including food materials and processed food products. The enzyme preparation may be used to modify a wide variety of food materials and processed food products containing protein. Such substrates include, for example, wheat flour, fish paste, poultry and cattle meats, soybean protein and egg white, and in processed foods including wheat-processed foods such as bread, noodles and confectionery, fish-processed foods such as fish cake, fried fish cake and baked fish paste in cylindrical shapes (chikuwa), and cattle meat-processed foods such as ham. The enzyme preparation exerts excellent effects on the modification of food materials such as soft wheat, fresh-water fish paste, poultry and cattle meats, soybean protein, and egg white.
2. Discussion of the Background
Many attempts have been made to modify protein-containing food materials. A large amount of research effort has been carried out regarding the modification of the protein in wheat flour for use in breads, noodles, confectionery and cakes.
For example, processes have been proposed, including a process of putting wheat flour in contact to carbonate gas and ethanol at 40° C. or higher (see JP-B-6-36725); a process of recovering gluten with excellent processability for production of processed foods, comprising adding an oxidant and water to wheat flour (see JP-B-6-34682); and a process of modifying wheat to prepare a type of wheat flour suitable for confectionery, comprising adding water at 40 to 500% by weight to wheat and drying then the resulting mixture at a temperature with no occurrence of the modification of the wheat (see JP-B-5-4055).
A process for modifying wheat flour is also proposed by using transglutaminase (abbreviated as TG hereinafter) catalyzing the transfer reaction of the acyl group in the &ggr;-carboxyamide group of a glutamine residue in a peptide. For example, a process for generating wheat flour with excellent texture for cake is proposed, comprising adding a given amount of TG to wheat flour for cake (see JP-A-2-286031), which is for example a process for preparing bread dough with springiness (U.S. Pat. No. 5,279,839). Furthermore, a process for preparing modified wheat flour is proposed, comprising spraying an aqueous enzyme solution to wheat flour after milling, and subsequently heating, drying and grinding the resulting flour (see JP-A-10-56948).
The known processes are excellent in some aspects, but these processes are still unsatisfactory as means for improving the physico-chemical properties of wheat flour, in view of the production aspects, safety profile, and economy. Accordingly, these processes do not overcome the conventional problems in terms of economy, simplicity and functionality.
Among various types of wheat flour, domestic wheat flour has drawbacks in that the physico-chemical properties thereof are poor because of the presence of soft albumen therein, and in that the flour is apparently of a poor color tone due to the ash content therein. These drawbacks have conventionally been barriers for the enlargement of the application of domestic wheat flour. These problems have not yet been completely overcome.
Meanwhile, it has been reported that fish-paste products having the quality of shape retentivity and moldability and with springiness can be prepared from a low-quality fish paste, by using a combination of TG and an alkali earth metal salt (see JP-A-6-113796). Although the shape retentivity and springiness of low-quality fish paste can thereby be improved therein, even the combination cannot give flexible and smooth texture with good bite to the resulting fish-paste products, although these properties are demanded for fish paste products. It has been very difficult to modify low-grade fish pastes with poorer gelation potency and deteriorated colors and flavor, like fish pastes prepared after landing, compared with fish pastes prepared at sea.
Besides the research works so as to overcome the problems regarding sea-water fish, research works have been promoted in China and East Asia to enlarge the applicable range of fresh-water fish of a possible importance as a fishery resource in the near future as food. Compared with fish pastes prepared from sea fish, those prepared from fresh-water fish have low gelation potency; the gelation potency thereof is rapidly lowered (deteriorated) at a temperature zone around 60° C., particularly significantly. In preparing fish paste products from fresh-water fish pastes, therefore, the gelation potency is lowered because these pastes are exposed to temperatures around 60° C. during treatment processes or under heating. Hence, the resulting fish paste products do not have the desired sensory properties when eaten.
For the production of cattle-meat-processed foods, such as ham, bacon and roasted pork, pickles are generally used for the modification of poultry and cattle meats by the following processes; an immersion process of immersing such meats in pickles; an injection process of injecting a pickle into meats; and a process of injecting a pickle into a meat and additionally adding another pickle as a covering pickle to the resulting meat with a tumbler. As well known in the art, pickles are essential for the production of cattle-meat-processed products including ham and bacon. As used herein, the term “pickles” refers to aqueous solutions of salt and brine-mix preparations of color fixatives such as nitrite salts. Current pickles contain sugar, color fixatives such as nicotinamide, absorbate salts, meat quality modifiers such as polyphosphate salts, and seasonings such as glutamic acid. For the purpose of the improvement of water-holding capacity, emulsifiability, texture profiles such as hardness and elasticity as well as binding property, additionally, pickles are now predominant, comprising a blend with extraneous protein materials including egg white, whey protein, sodium casemate and soybean protein.
When these extraneous protein materials are added to a pickle in too large of an amount, the flavor thereof adds peculiar odor with a different taste to the resulting products, causing severe deterioration of the quality thereof and the viscosity increase of the pickle, so that the pickle can hardly be injected by means of any injector. When these extraneous protein materials are added to a pickle at a too low concentration, the potential effects of the pickle become weak. It cannot be denied that a pickle blended with proteinous materials conventionally used can exert the intended effects only in a limited manner.
So as to overcome the problem, a method has been proposed, comprising injecting a pickle into ham and the like, wherein a ratio of sodium casemate and soybean protein causing the increase of the viscosity of a solution of the pickle is reduced by using TG (see JP-A-7-255426). However, the composition of the pickle definitely defines the quality of the final food products. Thus, each company in the food industry has its own unique blend technique. As such, the modification of the blend ratio or absolute content of an extraneous protein even for the suppression of viscosity increase is so deleterious that the method is very rarely adopted in a practice.
Soybean protein, a very nutritious, economical food material under ready supply, is now drawing considerable attention. Processed fo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Enzyme-treated protein-containing food and method for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Enzyme-treated protein-containing food and method for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Enzyme-treated protein-containing food and method for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2835471

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.