Enzyme containing oral composition having enhanced stability

Drug – bio-affecting and body treating compositions – Dentifrices – Ferment containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S049000, C424S054000

Reexamination Certificate

active

06692726

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to oral compositions for enhancing oral hygiene, and more particularly, to enzyme containing oral compositions having enhanced stability and antiplaque effectiveness.
2. The Prior Art
Oral compositions such as toothpastes, gels and mouth washes are designed to loosen and remove plaque in conjunction with a regular toothbrushing regimen. Dental plaque is present to some degree, in the form of a film, on virtually all dental surfaces. It is a byproduct of microbial growth, and comprises a dense microbial layer consisting of a mass of microorganisms embedded in a polysaccharide matrix. Plaque itself adheres firmly to dental surfaces and is removed only with difficulty even through a rigorous brushing regimen. Moreover, plaque rapidly reforms on the tooth surface after it is removed. Plaque may form on any part of the tooth surface, and is found particularly at the gingival margin, in cracks in the enamel, and on the surface of dental calculus. The danger associated with the formation of plaque on the teeth lies in the tendency of plaque to build up and eventually produce gingivitis, periodontitis and other types of periodontal disease, as well as dental caries and dental calculus.
It is known to the art to incorporate antimicrobial agents in oral compositions wherein these agents destroy or inhibit oral bacteria. Other agents are also incorporated in the oral composition to enhance the efficacy of the antimicrobial agents. For example, it is known to incorporate enzymes such as proteases in oral compositions, which enzymes disrupt or interfere with plaque formation and bacterial adhesion to tooth surfaces.
A problem encountered with commercially processed enzymes such as proteases is that they often contain a broad spectrum of undesirable by-products or impurities that are difficult to remove during manufacture. One such enzyme by-product is cellulase, an enzyme that catabolizes cellulose to simple sugars by hydrolysis of &bgr; (1-4) linkages.
Thickening agents conventionally used in oral compositions such as carboxymethyl cellulose, undergo degradation in the presence of cellulase enzymes which detrimentally affects the rheology of the dentifrice product. Thus, a means to inhibit the degradation of these thickeners by cellulase is a critical to obtaining stable enzyme containing oral care formulations.
Typical methods employed by the art for cellulase inhibition or isolation are not practical for use in the oral composition field. Treatments for cellulase inhibition such as salting out, heat treatment, or pH adjustment also compromise the activity of the enzymes. Classical methods of enzyme separation based on enzyme size, charge, solubility, and binding site are cost prohibitive and ineffective due to the similarities between certain cellulases and enzymes such as amylases. Inhibition of cellulase activity by treatment with heavy metals or heavy metal complexes such as mercury, silver and palladium chloride that bind to the enzyme active site are also unacceptable as these materials are toxic to humans and certainly cannot be used in an oral care product.
SUMMARY OF THE INVENTION
In accordance with the present invention it has been unexpectedly determined that a small but effective amount of cetyl pyridinum chloride and a reducing agent can provide enhanced stability and antiplaque efficacy in enzyme containing oral compositions.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Cetyl Pyridinum Chloride
Cetyl pyridinium chloride is incorporated in containing oral care compositions of the present invention at a concentration of about 0.005 to about 1.0% by weight and preferably about 0.50 to about 1.0% by weight of the oral care composition.
Enzymes
The enzymes useful in the practice of the present invention include carbohydrases such as glucoamylase and enzymes extracted from natural fruit products such as proteases which breakdown or hydrolyze proteins.
Glucoamylase is a saccharifying glucoamylase of
Aspergiullus niger
origin cultivated by fermentation. This enzyme can hydrolyze both the alpha-D-1,6 glucosidic branch points and the alpha-1,4 glucosidic bonds of glucosyl oligosaccharides. Additional carbohydrases useful in accordance with this invention are alpha and beta-amylase, dextranase and mutanase. Glucoamylase is a preferred enzyme and is incorporated in the oral composition of the present invention at a concentration of about 0.001 to 2% by weight and preferably about 0.01 to 0.55% by weight.
Protease enzymes useful in the practice of the present invention include those extracted from natural fruit products. The proteolytic enzymes are obtained from natural sources or by the action of microorganisms having a nitrogen source and a carbon source. Examples of proteolylic enzymes useful in the practice of the present invention include the naturally occurring enzymes papain (from papaya), bromelain (from pineapple), as well as serine proteases such as chymotrypsin. Additional enzymes include ficin and alcalase. Papain is a protease enzyme preferred for use in the practice of the present invention, the papain having an activity of 150 to 939 MCU per milligram as determined by the Milk Clot Assay Test of the Biddle Sawyer Group (see J. Biol. Chem., vol. 121, pages 737-745). The protease enzymes are included in the compositions of the present invention at a concentration of about 0.1 to about 3% by weight and preferably about 0.2 to about 2% by weight.
Enzymes which may beneficially be used in combination with the proteolytic enzymes and glucoamylase enzymes include carbohydrases such as, alpha-amylase, beta-amylase, tannase and lipases such as plant lipase, gastric lipase and pancreatic lipase.
The lipase enzyme is derived from a select strain of
Aspergillus niger
, exhibiting ramdom cleaving of the 1,3 positions of fats and oils. The enzyme has maximum lipolytic activity at pH 5.0 to 7.0 when assayed with olive oil. The enzyme has a measured activity of 120,000 lipase units per gram. The lipase may be included in the dentifrice composition at a concentration of about 0.010 to about 5.0% by weight and preferably about 0.02 to about 0.10 % by weight.
The presence of tannase enzyme can be further beneficial in facilitating the breakdown of extrinsic stain. Tannase enzymes have been purified from
Aspergillus niger
and
Aspergillus allianceus
and are useful in the hydrolysis of tannins, known to discolor the tooth surface.
Other suitable enzymes which can comprise the present invention include lysozyme, derived from egg white, which contains a single polypeptide chain crosslinked by four disulfide bonds having a molecular weight of 14,600 daltons. The enzyme can exhibit antibacterial properties by facilitating the hydrolysis of bacterial cell walls cleaving the glycosidic bond between carbon number 1 of N-acetylmuramic acid and carbon number 4 of N-acetyl-D-glucosamine, which in vivo, these two corbohydrates are polymerized to form the cell wall polysaccharide. Additionally, pectinase, an enzyme that is present in most plants facilitates the hydrolysis of the polysaccharide pectin into sugars and galacturonic acid. Finally, glucanase, which may be utilized to catalyze the breakdown of complex carbohydrates to glucans and the hydrolysis of beta glucan to glucose.
Enzyme Stabilizing Agents
Enzyme stabilizing agents which protect the enzyme from inactivation by chelating metal impurities present in the oral composition include ethylene diamine tetraacetic acid (EDTA) and sodium gluconate at concentrations between 0.01 and 1% by weight, preferably between 0.1 and 0.5% by weight. Agents stabilizing the enzyme against oxidation include reducing agents such as sodium bisulfite, metal gallates, potassium stannate, sodium stannate, ammonium sulfate, 3,5,-di-tert-butyl-4-hydroxytoluene (BHT), Vitamin E (&agr;, &bgr;,&ggr;, forms)/Vitamin E acetate and ascorbic acid. Potassium stannate is an enzyme stabilizing agent preferred for use in the practice of the present invention. The reducing agent is present in

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Enzyme containing oral composition having enhanced stability does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Enzyme containing oral composition having enhanced stability, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Enzyme containing oral composition having enhanced stability will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3345501

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.