Chemistry: molecular biology and microbiology – Animal cell – per se ; composition thereof; process of... – Rodent cell – per se
Reexamination Certificate
1995-05-17
2002-09-17
Prouty, Rebecca E. (Department: 1652)
Chemistry: molecular biology and microbiology
Animal cell, per se ; composition thereof; process of...
Rodent cell, per se
C435S320100, C435S209000
Reexamination Certificate
active
06451600
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates to expression of enzymatically active recombinant glucocerebrosidase. Gaucher's disease is an autosomal recessive lysosomal storage disorder characterized by a deficiency in a lysosomal enzyme, glucocerebrosidase (“GCR”), which hydrolyzes the glycolipid glucocerebroside. In Gaucher's patients, deficiency in this enzyme causes the glycolipid glucocerebroside, which arises primarily from degradation of glucosphingolipids from membranes of white blood cells and senescent red blood cells, to accumulate in large quantities in lysosomes of phagocytic cells, mainly in the liver, spleen and bone marrow. Clinical manifestations of the disease include splenomegaly, hepatomegaly, skeletal disorders, thrombocytopenia and anemia.
Current treatments for patients suffering from this disease include administration of analgesics for relief of bone pain, blood and platelet transfusions, and in severe cases, splenectomy. Joint replacements may be necessary for patients who experience bone erosion. Brady, 1966, 275 New England Journal of Medicine 312, proposed enzyme replacement therapy with GCR as a treatment for Gaucher's disease. However, Furbish et al., 1978, 81 Biochem. Biophys. Research Communications 1047, observed that infused human placental GCR does not reach the site at which it is active, namely lysosomes of cells of the reticuloendothelial system, but rather is taken up by hepatocytes. Furbish et al., 1981, 673 Biochem. Biophys. Acta 425, improved delivery of human placental GCR to phagocytic cells by treating the GCR sequentially with neuraminidase, &bgr;-galactosidase and &bgr;-N-acetylhexosaminidase, and demonstrated that the treated GCR was taken up more efficiently by rat Kupffer cells than untreated protein.
Sorge et al., 1985, 82 Proc. Nat'l. Acad. Sci., USA 7289, and Tsuji et al., 1986, 261 J. Biol. Chem. 50 describe cloning and sequencing of a gene encoding human GCR.
SUMMARY OF THE INVENTION
In general, in one aspect, the invention features recombinant enzymatically active GCR produced by a eukaryotic cell. The term “recombinant GCR” (“rGCR”) is used herein to mean any GCR produced from genetically manipulated GCR-encoding nucleic acid inserted into a cell, such as, e.g., an insect cell, a yeast cell, or a mammalian cell such as, e.g., a CHO cell. The nucleic acid is generally placed within a vector, such as a plasmid or virus, as appropriate for the host cell; for expression in an insect cell, for example, the nucleic acid can be placed within an insect virus such as, e.g., a baculovirus. “Insect cell”, as that term is used herein, means any living insect cell, such as, e.g., a Dipteran or Lepidopteran cell, present within a living insect or in tissue culture. “Mammalian cell”, as that term is used herein, means any living mammalian cell, such as, e.g., a rodent cell, or a primate cell, present within a living mammal or in tissue culture. The term “enzymatically active” is used herein with respect to recombinant GCR to mean that the rGCR is able to hydrolyze a glucocerebroside, and can cleave the low molecular substrate 4-methyl-umbelliferyl-&bgr;-D-glucoside with an activity of at least 10
6
units per milligram of rGCR.
In a second aspect, the invention features recombinant enzymatically active GCR having at least one exposed mannose residue, wherein the GCR is capable of specifically binding with a human mannose receptor protein.
The term “GCR having at least one exposed mannose residue” means that the GCR is glycosylated and at least one of the carbohydrate groups attached to the GCR has a carbohydrate chain terminating with a mannose residue. Preferably, the exposed mannose residue is readily available to bind with a mannose receptor protein, the exposed mannose residue being positioned external to the GCR in its three dimensional configuration. A GCR that is “capable of specifically binding with a human mannose receptor protein” as that term is used herein is a GCR that is specifically recognized by the receptor protein at an exposed mannose residue.
In preferred embodiments, the rGCR has an amino acid sequence with at least 95% homology to an amino acid sequence of a primate GCR, e.g., of a human GCR; the rGCR has at least two exposed mannose residues; the rGCR includes a carbohydrate moiety having between 3 and 9 mannose residues; preferably the mannose residues are arranged in a Man
3
to Man
9
structure (referred to as Man
3
GlcNAc
2
, etc.); the receptor protein naturally occurs in a phagocytic cell; and the GCR is produced within an insect cell such as, e.g., a Dipteran or a Lepidopteran cell, or within a yeast cell, or within a mammalian cell such as, e.g., a CHO cell.
FIG. 1
shows as examples a variety of carbohydrate moieties having between 3 and 9 mannose residues arranged in a Man
3
to Man
9
structure. The term “Man
3
to Man
9
structure”, as used herein, refers to arrangements of mannose residues such as are shown in
FIG. 1
, and their structural isomers.
In a third aspect, the invention features a eukaryotic cell containing genetically manipulated nucleic acid, capable of expression in the cell, encoding enzymatically active rGCR capable of specifically binding with a human mannose receptor protein.
In preferred embodiments, the nucleic acid is a vector including DNA encoding an amino acid sequence having at least 95% homology to an amino acid sequence of a naturally occurring GCR; most preferably having 95% homology to an amino acid sequence of a naturally occurring primate GCR such as, e.g., a human GCR.
In other preferred embodiments, the nucleic acid is DNA lacking at least 50% of the region that is present in a naturally occurring GCR gene between the promoter of the GCR coding sequence and the ATG start site of the gene; more preferably the nucleic acid is the DNA present in the plasmid pVL941.GCRD21, or in the plasmid pAc373.GCR2.2; and the cell is an insect cell transformed with such plasmids.
In other preferred embodiments, the nucleic acid is DNA present in the plasmid pGB20, or in the plasmid pGB37, or in the plasmid pGB42; and the cell is a mammalian cell, preferably a Chinese hamster ovary cell, transformed with any of such plasmids or cotransformed with plasmid pGB34 and any of such plasmids.
In other preferred embodiments, the cell containing the GCR-encoding nucleic acid is an insect cell, a yeast cell, or a mammalian cell.
In a related aspect, the invention features a living insect including an insect cell containing the GCR-encoding nucleic acid, or a living mammal including a mammalian cell containing the GCR-encoding nucleic acid, as described above.
In another aspect, the invention features a method for producing enzymatically active rGCR, including steps of introducing rGCR-encoding nucleic acid into a eukaryotic cell, causing the cell to express the rGCR, and purifying the rGCR. Expressed rGCR that is retained by the cell can be purified from an extract of the cell; expressed rGCR that is secreted by the cell into the surrounding medium can be purified directly from the medium.
In preferred embodiments, the method includes culturing the cell in vitro, or growing the cell in vivo within a living eukaryotic organism, such as a living insect or mammal.
The invention provides enzymatically active rGCR in a form that is specifically recognized by human mannose receptor proteins. The rGCR of the invention is suitable for administration to a human suffering from Gaucher's disease using a standard enzyme replacement protocol. The invention also provides enzyme which is free from viral or bacterial agents commonly found in human tissues such as, for example, human placenta, from which GCR is conventionally derived. In addition, the rGCR of the invention is secreted in large amounts from the cells in which it is produced into the surrounding medium, from which it is readily purified.
Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims.
DESCRIPTION OF THE PREFER
Barsomian Gary
Bergh Michel
Rasmussen James
Genzyme Corporation
Prouty Rebecca E.
Tegfeldt Jennifer
LandOfFree
Enzymatically active recombinant glucocerebrosidase does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Enzymatically active recombinant glucocerebrosidase, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Enzymatically active recombinant glucocerebrosidase will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2869178