Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Preparing compound containing saccharide radical
Patent
1996-11-21
1998-04-14
Weber, Jon P.
Chemistry: molecular biology and microbiology
Micro-organism, tissue cell culture or enzyme using process...
Preparing compound containing saccharide radical
435199, 514 42, 536 253, C12P 1934, C12N 922, A01N 4304, C07H 2104
Patent
active
057390134
DESCRIPTION:
BRIEF SUMMARY
BACKGROUND
The invention relates to 2',5'-oligoadenylates which possess a cyclophosphate group at the 3' end and a free OH group at the 5' end, to a process for preparing these compounds, to a pharmaceutical preparation comprising them, and to the use of these compounds for treating external papillomatoses.
The invention relates to novel chemical compounds, specifically 2',5'-oligoadenylate-2',3'-cyclophosphates of the general formula ##STR2## in which 0.ltoreq.n.ltoreq.10, in particular from .gtoreq.0 to 10, preferably 1 or 2.
The compounds in which n=1 or 2, in particular, may advantageously be used for medicinal purposes, specifically for the topical treatment of dermal and epithelial lesions which are caused by papilloma viruses.
Papillomatoses which are caused by papilloma viruses of the Papovaviridae family are infectious diseases which are widely distributed in humans and animals. Currently, more than 60 types of human papilloma viruses are known.
All these viruses possess a similar structure. In each case, their genome consists of a double-stranded, covalently closed annular DNA of 8000 base pairs which encodes the virion proteins and the proteins which are required for the intercellular development of the virus. In the infected cell, the papilloma virus genome is replicated over many generations in the form of episomes (dozens of copies per cell). Mature virions are only formed in the cells at the final stage of differentiation.
Under persistent conditions, it is only the first genes of the papilloma virus genome which are expressed, with these genes causing an alteration in the cell phenotype and in this way leading to the formation of papillomatoses. In the infected cells, a particular moiety of the virus genome has a probability, which is dependent on the virus type and on other factors, of being able to be incorporated into the cell genome, something which can then trigger conversion to malignancy. It is known that a substantial number of human tumors are the result of the conversion of papillomatoses to malignancy. These tumors thus represent a consequence of persistent, latent viral infections.
In this context, anogenital papillomatoses which are transferred by the sexual route are the most dangerous as far as conversion to malignancy is concerned (see M. Spitzer, Obstet. Gynecol., 1989, vol. 73, N3, pp. 303-307; H. zur Hausen, A. Schneider, The Role of Papilloma viruses in Human Anogenital Cancer, in: The apapovaviridae (N. P. Alzman ed.), 1987, vol. 2, pp. 245-263; H. zur Hausen, Papilloma viruses as Carcinoma-viruses, in: Adv. in Virus Ontology (G. Klein ed.), 1989, vol. 8, pp. 1-26).
Since papillomatoses are precancerous disorders which are easy to diagnose, the development of many tumors can be prevented by treating benign papillomatoses, i.e. before malignant conversion of the infected cells takes place.
At present, the most important methods for treating papillomatoses are surgical removal of the papillomas and necrotization by means of electrocauterization, cryocauterization or laser cauterization (see Virus infections. Etiology, epidemiology, clinics, pathogenesis and diagnosis. Rep. Col. of Scient. Public., Sverdlovsk, 1985 (in Russian)). For this purpose, use is made of liquid oxygen, and acids and mixtures thereof (nitric acid, oxalic acid, lactic acid, etc.), which bring about necrosis of the surrounding healthy tissue and, at the application site, lead to scar formation and frequently to recurrences and to the appearance of new papillomas close to the site from which the old ones were removed (see S. A. Bashi, Cryoterapia versus podophyllin in the treatment of genital warts, Int. J. Dermatol., 1985, vol. 24, N 8, pp. 535-536).
The effectiveness of medicinal methods for treating papillomatoses using podophyllotoxin and interferon is low and is also associated with powerful side effects and/or after-effects, even when therapeutic doses are used.
The biological activity of podophyllin can be explained by its antimitotic effect, which is comparable to that of colchicin. Its use fr
REFERENCES:
patent: 4378352 (1983-03-01), Kimchi et al.
Budowsky et al. "Preparation of cyclic 2', 3'-monophosphates of oligoadenylates (A2'p)nA>p and A3'p(A2'p)n-1A>p", Eur. J. Biochem. (1994) 220:97-104.
Renz et al., "Catalysts for the Polymerization of Adenosine Cyclic 2', 3'-Phosphate on a Poly (U) Template," Biochim. Biophys. Acta.240: 463-471 (1971).
Shimidzu et al., "A Simple and Conveient Synthesis of 3'-5'-or 2'-5' -Linked Oligonucleotide by Polymerization of Unprotected Ribonucleoside Using Phosphorus Tris-Azole," Nucl. Acids. Res.12: 3257-3270 (1984).
Uesugi et al., "Synthesis and Template-Directed Polymerization of Adenylyl(3'-5')adenosine Cyclic 2', 3'-Phosphate," Biochem.16:493-498 (1977).
Budowsky Edward I.
Gavrilov Alexander E.
Pivasyan Arman D.
Hanley Susan
Weber Jon P.
LandOfFree
Enzymatic synthesis of 2',5'-oligoadenylate-2',3'-cyclophosphate does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Enzymatic synthesis of 2',5'-oligoadenylate-2',3'-cyclophosphate, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Enzymatic synthesis of 2',5'-oligoadenylate-2',3'-cyclophosphate will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-633876