Enzymatic process for the manufacture of ascorbic acid,...

Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Preparing oxygen-containing organic compound

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S138000, C435S196000, C435S198000

Reexamination Certificate

active

06271006

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to processes for the manufacture of ascorbic acid, 2-keto-L-gulonic acid (KLG), and esters of KLG. More particularly, the present invention relates to the use of enzyme catalysts in the manufacture of ascorbic acid, KLG or esters of KLG.
BACKGROUND OF THE INVENTION
Ascorbic acid, also known as vitamin C, is a dietary factor which must be present in the human diet to prevent scurvy and which has been identified as an agent that increases resistance to infection. Ascorbic acid is used commercially, for example, as a nutrition supplement, color fixing agent, flavoring and preservative in meats and other foods, oxidant in bread doughs, abscission of citrus fruit in harvesting and reducing agent in analytical chemistry.
One current method for the manufacture of ascorbic acid utilizes a modification of the original Reichstein-Grossner synthesis (Reichstein et al.,
Helv. Chim. Acta
, 17:311 (1934); U.S. Pat. No. 2,301,811 to Reichstein; all references cited herein are specifically incorporated by reference). In this process a glucose source is converted to ascorbic acid. During conversion an intermediate of a diacetonide of KLG is produced.
Several two stage methods exists for the manufacture of ascorbic acid. In the first stage, glucose is converted via fermentation processes to either an isolated intermediate of KLG (Sonoyama et al.,
Applied and Envtl. Microbiology
, 43:1064-1069 (1982); Anderson et al.,
Science
, 230:144-149 (1985); Shinjoh et al.,
Applied and Envtl. Microbiology
, 61:413-420 (1995)) or the intermediate of the Reichstein-Grossner synthesis, the diacetonide of KLG.
The second stage, which converts either of the intermediates to ascorbic acid, proceeds by one of two reported routes. The first route, a modification of the latter steps of the Reichstein-Grossner synthesis, requires a multitude of steps whereby the intermediate is esterified with methanol under strongly acidic conditions to produce methyl-2-keto-L-gulonate (MeKLG). The MeKLG is then reacted with base to produce a metal ascorbate salt. Finally, the metal ascorbate salt is treated with an acidulant to obtain ascorbic acid. The second route is a one-step method comprising acid-catalyzed cyclization of KLG, as originally disclosed in GB Patent No. 466548 to Reichstein) and later modified by Yamazaki (Yamazaki,
J. Agri. Chem. Soc. Japan
, 28:890-894 (1954), and
Chem. Abs
., 50:5992d) and again by Yodice (WO 87/00839). The Yodice method is commercially undesirable because it uses large amounts of gaseous hydrogen chloride, requires very expensive process equipment and produces an ascorbic acid product requiring extensive purification.
Lipases, a group of hydrolase enzymes, have been used with some success in the synthesis of esters of organic acids. In particular, lipases have been utilized in the transesterification of alcohols in which the esterifying agent is irreversible, such as when vinyl acetate is used as the esterifying agent (Thiel,
Catalysis Today
, 517-536 (1994)). Gutman et. al.,
Tetrahedron Lett
., 28:3861-3864 (1987), describes a process for preparing simple 5-membered ring lactones from gamma-hydroxy methyl esters using porcine pancreatic lipase as the catalyst. However, Gutman et al.,
Tetrahedron Lett
., 8:5367-5368 (1987), later reported that substituting delta-hydroxy methyl esters for gamma-hydroxy methyl esters and using the same catalyst produced only polymers. In EP 0 515 694 A1 to Sakashita et. al., a synthesis of esters of ascorbic acid, which are acylated on the primary hydroxyl group, comprises reacting ascorbic acid with a variety of fatty acid active esters (i.e., fatty acid vinyl esters) in a polar organic solvent in the presence of a lipase.
Thus, there exists a need in the art for methods of producing (a) ascorbic acid or metal salts thereof from KLG or esters of KLG, (b) KLG from esters of KLG and (c) esters of KLG from KLG, which have high yield and high purity with little or no by-product formation and are conducted under mild conditions. Accordingly, it is to the provision of such that the present invention is primarily directed.
SUMMARY OF THE INVENTION
The present invention discloses an advancement in the chemical and biological arts in which a process for preparing ascorbic acid comprises contacting KLG or an ester of KLG with a hydrolase enzyme catalyst.
In another embodiment of the present invention, a process for producing KLG comprises contacting an ester of KLG in an aqueous solution with a hydrolase enzyme catalyst.
In still another embodiment of the present invention, a process for producing esters of KLG from KLG comprises contacting an alcoholic solution of KLG with a hydrolase enzyme catalyst. The alcoholic solution contains an alcohol corresponding to an alkyl moiety of the ester of KLG to be prepared.
In still another embodiment of the present invention, a process for producing esters of KLG from esters of KLG comprises contacting an alcoholic solution of a first ester of KLG with a hydrolase enzyme catalyst. The alcoholic solution contains an alcohol corresponding to an alkyl moiety of a second ester of KLG which is to be prepared.
DETAILED DESCRIPTION OF THE INVENTION
The present invention is directed to the unexpected discovery that ascorbic acid can be formed from KLG or, more preferably, esters of KLG by inducing ring closure of KLG or esters of KLG using a hydrolase enzyme as a catalyst. The process for producing the ascorbic acid may be performed in the melt or in solution. The process may also be performed in vivo or in vitro. For in vivo processes, the hydrolase enzyme catalyst may be naturally occurring within a host cell or may be introduced into a host cell or organism by recombinant DNA methods.
The present invention is also directed to the unexpected discovery that KLG can be prepared in a reversible reaction by reacting an ester of KLG in an aqueous solution using a hydrolase enzyme as a catalyst. Moreover, the present invention is directed to the unexpected discovery that an ester of KLG can be prepared by reacting KLG or another ester of KLG in an alcoholic solution using a hydrolase enzyme as a catalyst. The alcohol used to prepare the solution corresponds to the alkyl moiety of the ester of KLG being prepared.
The hydrolase enzymes for use as catalysts in the processes of the present invention may be derived from or isolated from any appropriate source organisms. Examples of which include, but are not limited to, plants, microorganisms, and animals, such as yeast, bacteria, mold, fungus, birds, reptiles, fish, and mammals. Hydrolase enzymes for the purposes of this invention are defined generally by the enzyme class E.C.3.-.-.-, as defined in
Enzyme Nomenclature
(Academic Press, 1992), and are commercially available.
Preferred hydrolase enzymes are those capable of effecting hydrolysis of molecules containing carbonyl or phosphate groups. More specifically, the preferred hydrolases are capable of effecting hydrolysis at a carbonyl carbon bearing a heteroatom single bond. Examples of such carbonyl carbons bearing a heteroatom single bond include, but are not limited to, esters, thioesters, amides, acids, acid halides, and the like. The preferred hydrolases include the enzyme class E.C.3.1.-.-, which includes hydrolases acting on ester bonds, such as esterases and lipases; the enzyme class E.C.3.2-.-, which includes glycosidases; the enzyme class E.C.3.4-.-, which includes peptide hydrolases, such as proteases; and the enzyme class E.C.3.5.-.-, which includes amidases acting on bonds other than peptide bonds. Most preferred hydrolases include proteases, amidases, lipases, and esterases.
More preferred hydrolases contain an active site serine residue which is capable of undergoing esterification or transesterification with KLG or esters of KLG. Even more preferred are those hydrolases which contain the catalytic triad of serine, histidine and apartic acid.
Preferred proteases include those derived from bacteria of the genera Bacillus or Aspergillus. Particularly preferred proteases are

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Enzymatic process for the manufacture of ascorbic acid,... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Enzymatic process for the manufacture of ascorbic acid,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Enzymatic process for the manufacture of ascorbic acid,... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2536211

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.