Enzymatic process for producing 4-hydroxy-cinnamyl alcohols

Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Preparing oxygen-containing organic compound

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

435189, 4352545, C12P 722, C12N 902, C12N 114

Patent

active

057211256

DESCRIPTION:

BRIEF SUMMARY
This application is a Section 371 filing based on PCT/EP94/01792, filed Jun. 1, 1994 which in turn is based on EP patent application No. 93 201975.5, filed Jul. 6, 1993.
The invention concerns an enzymatic process for producing 4-hydroxy-cinnamyl alcohol and analogous compounds, hereinafter collectively referred to as 4-hydroxy-cinnamyl alcohols. More particularly the invention concerns an enzymatic process for converting 4-allyl-phenols to 4-hydroxy-cinnamyl alcohols.
4-Hydroxy-cinnamyl alcohols are important intermediates. Thus, 3-methoxy-4-hydroxy-cinnamyl alcohol (coniferyl alcohol) is an intermediate in the synthesis of vanillin which is one of the most widely used aroma components in the food industry, Likewise, 4-hydroxy-cinnamyl alcohol itself (coumaryl alcohol) may be converted to 4-hydroxybenzaldehyde which is also of interest in the flavour industry. Processes known for converting coniferyl alcohol to vanillin include direct conversion such as described in EP-A-0 542 348, or conversion to other intermediates followed by further conversion of those intermediates to vanillin. Thus, coniferyl alcohol may be converted chemically to coniferyl aldehyde. Coniferyl aldehyde in turn may be converted to Vanillin using Arthrobacter globiformis mutants as described in DE-A-3604874. Furthermore, coniferyl alcohol may be converted to a suitable ester such as its benzoic acid ester, which in turn can be converted to vanillin, again as described in EP-A-0 542 348.
4-Allyl-phenols may be obtained from various biological sources. Thus, eugenol is an abundantly available starting material e.g. obtained from clove leaf and clove bud oil. On the other hand, various microbiological processes are known for directly converting eugenol into vanillin, see e.g. processes mentioned in DE-A-3604874, using certain Corynebacterium or Pseudomonas species, and the process described in EP-A-0 405 197.
Furthermore Agricultural and Biological Chemistry, 47 (1983) 2639-2640 discloses that a bacterium isolated from soil, tentatively identified as a Pseudomonas sp, acted in the form of a crude extract towards eugenol. After cultivation of this bacterium in the presence of eugenol several metabolites were isolated from the broth and identified as ferulic acid, vanillic acid, procatechuic acid. Subsequently coniferyl alcohol was also identified. The publication suggests that coniferyl alcohol was formed in very small amounts.
Moreover there are two patent applications which are not prior published, but which rely on earlier (first) filing dates than the present application viz. EP-A-0 583 687 (Haarmann & Reimer) which describes the preparation of e.g. coniferyl alcohol from eugenol by using enzyme material from Pseudomonas sp with deposit numbers DSM 7062 and DSM 7063 or microorganisms with genetic material therefrom. The yield of coniferyl alcohol reported is 43.5% of the theory according to Example 4.
JP-A-5 227 980 (920035338) (Takasago Perfumery) available as Derwent AN 93-316614 which describes the preparation of at least one of vanillin, coniferyl alcohol, coniferyl aldehyde, ferulic acid and vanillyl alcohol from eugenol by decomposition involving fermentation with a mutant from the Pseudomonas genus. The example reports that mutant TK-2102 was cultured in a medium with eugenol and yielded a mixture of vanillyl alcohol, vanillin and ferulic acid and it is noteworthy that there is no mention that coniferyl alcohol was formed.
However, these processes suffer from the disadvantages that they use difficult or inaccessible microorganisms, give rise to many undesirable byproducts or give very low yields. Therefore, an efficient enzymatic or microbiological process for converting eugenol to coniferyl alcohol would be an important step towards an economical process for obtaining vanillin.
It has now been found that various 4-hydroxy-cinnamyl alcohols can be prepared by enzymatic oxidation of the corresponding 4-allyl-phenol using vanillyl alcohol oxidase, an intracellular aryl alcohol oxidase having covalently bound FAD as prosthetic gr

REFERENCES:
patent: 5128253 (1992-07-01), Labuda et al.
Catalog of Centraalbureau voor Schimmelcultures via the Internet Jun. 11, 1997.
Tadasa, et al: "Initial Steps of Eugenol Degradation Pathway of a Microorganism", Agricultural and Biological Chemistry, vol. 47, No. 11, Nov. 1983 pp. 2639-2640.
De Jong, et al: "Purification and characterization of vanillyl-alcohol oxidase from Penicillium simplicissimum", European Journal of Biochemistry, vol. 208, No. 3, Sep. 15, 1992, pp. 651-657.
Database WPI, Section Ch, Week 9340, Derwent Publications Ltd., Class B05, AN 93-316614 & JP,A,5 227 980, Sep. 7, 1993.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Enzymatic process for producing 4-hydroxy-cinnamyl alcohols does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Enzymatic process for producing 4-hydroxy-cinnamyl alcohols, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Enzymatic process for producing 4-hydroxy-cinnamyl alcohols will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1874588

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.