Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Preparing oxygen-containing organic compound
Reexamination Certificate
1998-12-08
2003-09-09
Marx, Irene (Department: 1651)
Chemistry: molecular biology and microbiology
Micro-organism, tissue cell culture or enzyme using process...
Preparing oxygen-containing organic compound
C435S135000, C426S601000
Reexamination Certificate
active
06617141
ABSTRACT:
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to Indian Application No. 3504/DEL/97, filed Dec. 8, 1997.
1. Field of the Invention
This invention relates to a process for the preparation of reduced calorie fats. This invention particularly relates to the preparation of reduced calorie fats by incorporating behenic acid into edible oils such as sunflower, groundnut, safflower, rapeseed, soybean and fish oils. More particularly, it provides a reduced calorie plastic for containing essential fatty acids and natural antioxidants using different processes involving chemical interesterification of 1,3-dibehenin and edible oils or chemical interesterification of 1,3-dibehenin based structured fat and edible oils or enzymic transesterification of edible oils with alkyl behenates.
2. Background
Typical fats and oils provide approximately 6 kcal/g of metabolizable energy compared to 4 kcal/g for protein or carbohydrate [Atwater, W. O. et al., Annu. Rep. Storrs Agric. Exp. Stn. (1903) No.15, 123-146 & Maynard, L. A., J. Nutr. 28 (1944) 443-453]. In addition to the caloric and nutritional value, fats have many functions in the diet. Fats and oils carry, enhance and release the flavours of other food components, delays digestion, increases palatability of food and imparts the feeling of satiety. Certain unsaturated fatty acids like 9,12-octadecenoic acid (linole acid) which are known to be essential fatty acids are necessary as they are not produced in the body. Fats and oils are also associated with the fat-soluble vitamins A, D, E and K, and the absorption of these vitamins is impaired at very low fat intakes. Fat is also associated with diseases such as coronary heart disease and cancer, a high fat diet being positively linked to both. The U.S. Surgeon General has recommended that no more then 30% of the dietary calories should be derived from fat [U.S. Department of Health and Human Services, The Surgeon General's Report on Nutrition and Health, DHHS (PHS) Publication 88-50210, [U.S.GPO., Washington, D.C. (1988)]. Regulatory and advisory bodies advocate a lowered fat intake in order to reduce the incidence and morbidity of many coronary diseases, stroke, high blood pressure, obesity and diabetes.
However, food habits are difficult to change and the positive contribution of fats to increase the palatability of foods is generally recognized. The level of fat in the diet of affluent societies is too high and needs to be lowered. Reduced fat or low calorie foods as well as fat replacers or substitutes have been the result of numerous attempts to meet the health recommendations without changing traditional ways of eating.
Three different types of fat replacers namely carbohydrate-based, protein-based and fat-based are reported in the literature.
Carbohydrate-based fat replacers consists of many products like dextrin, polydextrose, maltodextrin, cellulose, gums etc., which are used as thickeners and stabilizers in frozen desserts, salad dressings, margarine type spreads, baked products, frostings and snacks. Many products based on starch have been developed specifically as fat mimetic [Alexander, R. J., Cereal Food World 40 (1995) 366-368]. However, starch based products are not good for diabetics for whom good glucose control is necessary [Grundy, S. M., Diabetics Care 14 (1991) 796-801]. The U.S. Food and Drug Administration (FDA) regulations state that sensitive individuals may experience a laxative effect from excessive consumption of maltrodextrins [U.S.A. Food & Drug Administration Regulations 21 CFR Part 105]. Some popular examples of carbohydrate based fat replacers are Stellar, Remyrise AP, N-Oil, Lycadex, Maltrin, Ex-cel, Fibercel, Centu Tex, Fibrex etc. [Jones, J. M., Chemistry & Industry, (1996) 494-498].
Protein-based fat replacers are produced using common proteins such as egg white, skimmed milk or whey by microparticulating them into a particle size of 1-3 &mgr;m to obtain a slippery and creamy fat like feeling which provide 1-2 kcal/g [Singer, N. S., et al., J.] Amer. Coll. Nutr. 9 (1990) 388-397]. These products are being used in variety of food products such as yogurts, cheese products, frozen desserts and also for formulating low fat baked goods such as cheese cakes and pie crust. Gelatin from fish waste was also reported as a fat replacer to use as a viscosity modifier and to impart a creamy texture. However, such fat replacers are reported to be hypersensitive for persons with allergy to the base proteins [Young, V. R., et al., J. Amer. Coll. Nutr. 9 (1990) 418-426]. Some examples of protein based fat replacers popular in the market are Dairylight, Simplesse, Lita, Calpra 75 etc. [Jones, J. M., Chemistry & Industry (1996) 494-498].
Carbohydrate-based and protein-based fat replacers are presently used in a range of foods, and are effective in delivering fat-like texture where the final product has a significant water content and is not exposed to extremely high temperatures or temperature variations [Mela, D. J., Fett/Lipid 98 (1996) 50-55]. These problems can be overcome by fat-based low calorie fats.
Fat-based low calorie fats have many advantages like functional and sensory properties very similar to the normal fats when compared to the carbohydrate and protein-based fat replacers. They also provide both the characteristic texture and flavour effects of native fats.
Many fat-based low calorie fats are reported in the literature namely propoxylated glycerols esterified with fatty acid chlorides [Masten, L. W., EP 571,219 (1993); White, J. F. et al., EP 325,010 (1989)]; fatty acid diesters of C
4-10
dihydric alcohols [Klemann, L. P. et al., U.S. Pat. No. 5,286,512 (1994); Klemann, L. P. et al., U.S. Pat. No. 5,006,351 (1991)]; trioltriester derivatives [Klemann, L. P. et al., U.S. Pat. No. 5,043,179 (1991)]; polyol fatty acid polyesters [Kester, J. J. et al., U.S. Pat. No. 5,314,707 (1994); Letton, J. C., et al., 5,306,514 (1994)]; polyvinyloleate [D'Amelia, R. P. et al., U.S. Pat. No. 4,915,974 (1990)]; oleoylloeate [Jacklin, P. T. et al., U.S. Pat. No. 4,915,974 (1990)]; bis-oleoylaspartyladipare [Klemann, L. P. et al., U.S. Pat. No. 5,139,807 (1992)]; esterified alkoxylated mono- and diglycerides [Cooper, C. F. et al., U.S. Pat. No. 5,371,253 (1994)]; triglycerides containing C
12-22
fatty acids having alkyl groups at least at the position 5,9,13 of the alkyl chain [Tagiri, M. et al., JP 04,325,055 (1992)]; 1,3-didecanoylglycerol [Mazur, A. W. et al., U.S. Pat. No. 5,137,660 (1992)]; alkyl or polyol thioesters [Klemann, L. P., U.S. Pat. No. 4,992,293 (1991)]; propyleneglycol diesters of medium chain and long chain saturated fatty acids [Stipp, G. K. et al., EP 495,553 (1992)]; alkylmalonic acid diesters [Fulcher, J. G. et al., Aus. Pat. No. 594,040 (1990)]; esterified polyoxyalkylene block co-polymers [Cooper, C. F. et al., EP 481,717 (1992)]; alkylglycoside fatty acid polyesters [Winter, D. D. et al., U.S. Pat. No. 4,942,054 (1990)]; fatty acid esters of sucrose [Letton, J. A., et al., EP 375,027 (1990)]; sorbitol fatty acid esters [Gruetzmacher, G. D., EP, 591,258 (1994)]; partially esterified polysaccharide with fatty acids [White, J. F. U.S. Pat. No. 4,959,466 (1990)]; alkoxylated sugar and sugar alcohol esters [Ennis, J. L. et al., EP 425,635 (1991)]; polysaccharide fatty acid polyester [Meyer, R. S. et al., U.S. Pat. No. 4,973,489 (1990)]. All these are unnatural compounds not normally encountered in human diet and the long term affects of consumption of such are presently unknown.
Examples of the more commonly known low calorie fats are OLESTRA™, medium chain triglycerides (MCTs), Caprenin and SALATRIM™. OLESTRA™ is a mixture of hexa-, hepta-, and octa- fatty acid esters of sucrose. The physical properties of sucrose
Kaimal Thengumpillil N. B.
Kanjilal Sanjit
Prasad Raghapudi B. N.
Council of Scientific & Industrial Research
Marx Irene
Pennie & Edmonds LLP
LandOfFree
Enzymatic process for preparing reduced-calorie fats... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Enzymatic process for preparing reduced-calorie fats..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Enzymatic process for preparing reduced-calorie fats... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3071428