Entangled nonwoven fabrics and methods for forming the same

Stock material or miscellaneous articles – Structurally defined web or sheet – Discontinuous or differential coating – impregnation or bond

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C442S344000, C442S350000, C442S359000, C442S362000, C442S408000, C442S411000

Reexamination Certificate

active

06200669

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to nonwoven fabrics. More particularly, the present invention relates to nonwoven webs and methods for forming the same from splittable multicomponent fibers.
BACKGROUND OF THE INVENTION
Multicomponent fibers and methods of fibrillating multicomponent fibers to create fine fibers are known in the art. Multicomponent fibers, also referred to as “conjugate fibers” or “fibrillatable fibers”, contain at least two components that occupy distinct cross-sections along substantially the entire length of the fiber. They are typically produced by simultaneously and continuously extruding a plurality of molten fiber forming polymers through spinning orifices of a spinneret to form unitary filament strands. The composition of the individual components, which collectively comprise the multicomponent fibers, are often selected from dissimilar polymers which are not miscible in one another and which further have different coefficients of contraction, different solubility characteristics and/or other distinct physical properties. In this regard the selection of the polymers for the individual components or segments is often limited by the properties required for separation of adjacent segments.
One method which has been used to fibrillate unitary multicomponent fibers is to cause disparative swelling and shrinkage of one of the components relative to the others. This causes separation of the multicomponent fibers into two or more of its individual components. For example, U.S. Pat. No. 3,966,865 issued to Nishida et al. discloses a method of forming synthetic fibrous structures from multicomponent fibers in which the individual components may comprise a polyamide and either a polyester, polyolefin or polyacrylonitrile. The polyamide component is swelled and shrunk by treatment with an aqueous solution of an alcohol, such as benzyl alcohol or phenylethyl alcohol, causing separation. Similarly, U.S. Pat. No. 4,369,156 issued to Mathes et al. discloses a process for separating a multicomponent fiber of a copolyamide and a polyester by treatment with liquid or vaporous water 10-20° C. below the softening point of the copolyamide. This treatment causes disparative shrinkage of the polymers and, thus, separation. However, separation by such processes may result in low and/or uneven fibrillation as well as fibers or fabrics which have lost desired characteristics, e.g. softness and bulk. In addition, such processes often require complex and lengthy processing which may also generate by-products which are costly to dispose.
Another method employed in separating the individual components of a multicomponent fiber is coextruding incompatible fiber-forming polymers into a unitary fiber and then dissolving one of the polymers thereby freeing the insoluble components. For example, U.S. Pat. No. 5,405,698 to Dugan teaches a multicomponent fiber composed of a plurality of water-insoluble polyolefin filaments surrounded by a water-soluble polymer. Such a configuration is often referred to as an “islands-in-sea” type fiber. The multicomponent fiber is treated with water thereby dissolving the water-soluble polymer and releasing the individual water-insoluble polyolefin filaments. Similarly, U.S. Pat. No. 4,460,649 issued to Park et al. teaches a multicomponent fiber composed of a polyamide and a polyester having wedged shaped segments surrounded by an outer component which is part of a central core. The outer component may be removed by a chemical process, such as treatment with an acid or alkali, and the remaining components separated by a swelling agent. However, separation in accord with such processes often utilizes polymers and/or solvents which are uneconomical and which generate considerable by-products which are environmentally undesirable and costly to dispose. Furthermore, such processes may result in fibers which have lost desired characteristics, i.e. softness, due to the chemical treatments. It is also important to note that such process inherently cause a considerable loss in bulk due to the removal of a substantial portion of the polymeric material forming the initial multicomponent fibers.
Thus, there exists a need for a method of producing a nonwoven web from splittable multicomponent fibers and a method for fibrillating the multicomponent fibers which does not destroy or degrade the desired characteristics of the polymeric fibers and/or the web resulting therefrom. There further exists a need for such a process which allows a wider variety of compatible polymers for use in splittable multicomponent fibers. Additionally, there exists a need for nonwoven webs and articles made therefrom having durable microfibers, a soft cloth-like feel, good bulk, high coverage (opacity), good barrier properties and improved hydroentangling processing characteristics.
SUMMARY OF THE INVENTION
The aforesaid needs are fulfilled and the problems experienced by those skilled in the art overcome by the present invention which provides a method of fabricating a nonwoven web comprising the steps of (a) forming a substrate of multicomponent fibers wherein the multicomponent fibers are comprised of at least two components wherein each component is partially exposed on the outer surface of the multicomponent fiber; (b) bonding the multicomponent fibers of said substrate; and thereafter (c) entangling the bonded substrate of multicomponent fibers, wherein the individual components become separated from the multicomponent fibers and further wherein the multicomponent fibers and components separated therefrom become entangled to form an integrated nonwoven web. In a further aspect, the bonding may comprise thermal or ultrasonic bonding at least about 5% of the surface area of the multicomponent fiber substrate, desirably from about 5 to about 50% of the surface area of the substrate. Entangling of the bonded multicomponent fiber substrate may be accomplished by hydroentangling the fibers; optionally by subjecting the multicomponent fibers to a plurality of entangling treatments, such as hydroentangling each side of the bonded multicomponent fiber substrate. The individual segments or components of the multicomponent fibers occupy distinct cross-sections or “zones” and, in one aspect, may comprise a plurality of pie shaped regions. In a further aspect, the individual components may comprise melt-spinnable materials which have a low mutual affinity and which are not miscible in each other, such as a polyolefin and a non-polyolefin, although materials which tend to readily adhere to one another may likewise be used with the addition of a suitable lubricant or slip agent.
A further aspect of the invention provides a nonwoven web comprising an entangled web of continuous multicomponent thermoplastic fibers, wherein at least a portion of said multicomponent fibers are separated into the individual components. The entangled web may have bond areas therein comprising at least about 5% of the surface area of the web. The bond areas are at least partially degraded with a portion of the continuous fibers within the bond areas separated from said bond points. The nonwoven web desirably has bond areas comprising from about 5 to about 50% of the surface area of the web and, even more desirably, from about 10 to about 30% of the surface area of the web. In addition, the nonwoven web may have bond areas which are discrete areas spaced across substantially the entire surface area of the web.


REFERENCES:
patent: 3692618 (1972-09-01), Dorschner et al.
patent: 3924045 (1975-12-01), Ogasawara et al.
patent: 3966865 (1976-06-01), Nishida et al.
patent: 4073988 (1978-02-01), Nishida et al.
patent: 4239720 (1980-12-01), Gerlach et al.
patent: 4369156 (1983-01-01), Mathes et al.
patent: 4381335 (1983-04-01), Okamoto
patent: 4442161 (1984-04-01), Kirayoglu et al.
patent: 4460649 (1984-07-01), Park et al.
patent: 4663221 (1987-05-01), Makimura et al.
patent: 4856152 (1989-08-01), Kis
patent: 4939016 (1990-07-01), Radwanski et al.
patent: 4950531 (1990-08-01), Radwanski et al.
patent: 5009747 (

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Entangled nonwoven fabrics and methods for forming the same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Entangled nonwoven fabrics and methods for forming the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Entangled nonwoven fabrics and methods for forming the same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2487016

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.