Ensuring quality of information transfer in...

Multiplex communications – Communication over free space – Combining or distributing information via code word channels...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S347000, C455S522000, C375S130000

Reexamination Certificate

active

06771631

ABSTRACT:

FIELD OF THE INVENTION
This invention concerns a method of ensuring quality of information transfer of an information packet, when the information packet is protected by coding and interleaved into at least two transmission periods, in radio bursts in a system implemented with TDMA technology or in power regulation periods in a system implemented with CDMA technology, for example.
TECHNICAL BACKGROUND
In the transfer of speech and data in a digital telecommunications system, such transfer errors occur in the transfer link which reduce the quality of the transferred signal. Through error correction of the digital signal to be transmitted, e.g. through channel coding and/or retransmission, and through interleaving of bits the quality of the transmission and the transfer error tolerance are improved. In channel coding, such redundant data is added to the data to be transmitted, with the aid of which the original data can be detected faultlessly in the receiver, even if the signal would corrupt during the transfer. Channel coding may be carried out e.g. as convolution coding or as repetition coding. Retransmission is used for correcting transfer errors either independently or e.g. in addition to channel coding, whereby any errors in a channel-coded transmission are corrected by a retransmission of the distorted frames. In interleaving of bits to be transmitted, the bits of several code words are mixed together, whereby adjacent bits of the signal will spread out into several radio bursts.
FIG. 2
illustrates interleaving of speech bursts S
1
, S
2
and S
3
into radio bursts R
1
-R
6
. In the example shown in the figure, each speech burst S
1
-S
3
is interleaved into four successive radio bursts. Owing to the interleaving it may still be possible to detect the signal, even if a whole radio burst were to be lost in the information transfer.
FIG. 1
in the appended drawing is a simplified block diagram of the GSM system (Global System for Mobile communications). A mobile Station (MS) is connected over a radio path with some base transceiver station (BTS), in the case shown in
FIG. 1
with base transceiver station BTS
1
. The base station sub-system (BSS) includes a base station controller (BSC) and subordinated base transceiver stations BTS. Subordinated to a mobile services switching centre (MSC) are usually several base station controllers BSC. The mobile services switching centre is connected to other mobile services switching centres, and through the gateway mobile services switching centre (GMSC) the GSM network is connected with other networks, such as public switched telephone network PSTN, another public land mobile network PLMN or ISDN network. The whole system is monitored by an Operation and Maintenance Centre OMC.
In a mobile communications system, transmission power control is performed in mobile station MS and/or in base transceiver station BTS in order to reduce the network's noise level and compensate for fading on the radio path. Power control generally aims at preserving the received signal constantly almost at the same power level, which is as low as possible, however, so that the quality of the received signal is preserved. When the signal and/or power level in a radio communication between the mobile communications network and the mobile station drops below the desirable level, control of the transmission power may be preformed at base transceiver station BTS and/or in mobile station MS in order to improve the radio communication. The transmission power of mobile station MS is usually controlled from a fixed network with the aid of a special power control algorithm. Mobile station MS measures the reception lever (field strength) and quality of the downlink signal reveived from ase transceiver station BTS
1
of the serving cell, whereas base treansceiver station BTS
1
of the serving cell measures the reception level (field strength) and quality of the uplink signal received from mobile station MS. Based on these measurement results and on established power control parameters, the power control algorithm determines a suitable transmission power level, which is then made known to mobile station MS in a power control command. Power control is performed continuously during the call, e.g. in a GSM system of the TDMA type typically twice a second and in a UMTS-WCDMA system of the CDMA type (Universal Mobile Telecommunication System) 1600 times a second.
In radio systems implemented with Time Division Multiple Access (TDMA) technology, the signal is transferred over the radio path in radio bursts, some of which are reserved for trafficking use, e.g. for transmitting speech bursts or user data. At times such a traffic channel may be stolen for other than trafficking use, e.g. for signaling, when an extra need for signaling occurs unexpectedly (in-burst signalling). Hereby the information which is intended for transmission in the stolen radio burst will not be transmitted, but owing to coding and interleaving of the information it may be possible from the received radio bursts to interpret the information to be transferred. However, the likelihood that the information is lost completely, e.g. that a whole speech burst is lost, will grow considerably as the information in the end of the information packet is subjected to the effect of transfer errors on the transfer path.
In code division multiple access (CDMA) radio systems, the function is based on spread spectrum communication. The data signal to be transmitted is multiplied by a special hash code, whereby the transmission will spread onto a wide-band radio channel. Hereby several users may use the same wide-band radio channel at the same time for transmitting CDMA signals processed by different hash codes. In CDMA systems, the special hash code of each subscriber will hereby produce a traffic channel in the system, in the same sense as a time slot in TDMA systems. When required, one or more power control periods of a traffic channel may be stolen for signalling use, whereby the information which was to be transmitted in these power control periods will not be transmitted. The stealing of power control periods for other use causes an increased probability of loss of the information packet, like the stealing of radio bursts in a TDMA system.
Discontinuous Transmission (DTX) means a functionality where the transmission of a mobile station or a base transceiver station on the radio path can be cut off, when the signal to be transmitted does not contain any information significant to the recipient, e.g. for the duration of pauses in speech. The purpose of this is to reduce the transmitter's consumption of current, which is very essential for a mobile station, and to lower the noise level of the network. Discontinuous transmission is generally known in connection with digital mobile communications systems. The speech activity of the signal to be transmitted is monitored in the mobile station and in the base transceiver station, and the transmission to the radio path is cut off when there is no speech information. When the speech begins again, the speech is coded and transmitted to the radio path in the proper time slot. E.g. in a radio system according to FRAMES FMA
1
and implemented with WB-TDMA (Wide Band Time Division Multiple Access) technology, the WB-BETH protocol allows transposition of users, that is, the connection is cut off and the radio bursts are taken over for other use while the transmission is cut off, and the connection is again quickly set up, when the speech reoccurs. Hereby the user does not normally notice from any reduced speech quality that the channel becomes free. However, such situations become a problem, where the connection can not be re-established so quickly as required, e.g. when momentarily there is no free channel at the base transceiver station for transmission of radio bursts, or when signalling commands have collided on the radio path. Hereby the information of one or more radio bursts is lost, when radio bursts can not be transmitted. Even the non-transmission of one radio

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ensuring quality of information transfer in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ensuring quality of information transfer in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ensuring quality of information transfer in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3357969

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.