Enhancing biological knowledge discovery using multiples...

Data processing: artificial intelligence – Neural network – Learning task

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C706S012000, C706S020000, C706S025000, C706S045000

Reexamination Certificate

active

06760715

ABSTRACT:

TECHNICAL FIELD
The present invention relates to the use of learning machines to identify relevant patterns in biological systems such as genes, gene products, proteins, lipids, and combinations of the same. These patterns in biological systems can be used to diagnose and prognose abnormal physiological states. In addition, the patterns that can be detected using the present invention can be used to develop therapeutic agents.
BACKGROUND OF THE INVENTION
Enormous amounts of data about organisms are being generated in the sequencing of genomes. Using this information to provide treatments and therapies for individuals will require an in-depth understanding of the gathered information. Efforts using genomic information have already led to the development of gene expression investigational devices. One of the most currently promising devices is the gene chip. Gene chips have arrays of oligonucleotide probes attached a solid base structure. Such devices are described in U.S. Pat. Nos. 5,837,832 and 5,143,854, herein incorporated by reference in their entirety. The oligonucleotide probes present on the chip can be used to determine whether a target nucleic acid has a nucleotide sequence identical to or different from a specific reference sequence. The array of probes comprise probes that are complementary to the reference sequence as well as probes that differ by one of more bases from the complementary probes.
The gene chips are capable of containing large arrays of oliogonucleotides on very small chips. A variety of methods for measuring hybridization intensity data to determine which probes are hybridizing is known in the art. Methods for detecting hybridization include fluorescent, radioactive, enzymatic, chemoluminescent, bioluminescent and other detection systems.
Older, but still usable, methods such as gel electrophosesis and hybridization to gel blots or dot blots are also useful for determining genetic sequence information. Capture and detection systems for solution hybridization and in situ hybridization methods are also used for determining information about a genome. Additionally, former and currently used methods for defining large parts of genomic sequences, such as chromosome walking and phage library establishment, are used to gain knowledge about genomes.
Large amounts of information regarding the sequence, regulation, activation, binding sites and internal coding signals can be generated by the methods known in the art. In fact, the amount of data being generated by such methods hinders the derivation of useful information. Human researchers, when aided by advanced learning tools such as neural networks can only derive crude models of the underlying processes represented in the large, feature-rich datasets.
Another area of biological investigation that can generate a huge amount of data is the emerging field of proteomics. Proteomics is the study of the group of proteins encoded and regulated by a genome. This field represents a new focus on analyzing proteins, regulation of protein levels and the relationship to gene regulation and expression. Understanding the normal or pathological state of the proteome of a person or a population provides information for the prognosis or diagnosis of disease, development of drug or genetic treatments, or enzyme replacement therapies. Current methods of studying the proteome involve 2-dimensional (2-D) gel electrophoresis of the proteins followed by analysis by mass spectrophotometry. A pattern of proteins at any particular time or stage in pathologenesis or treatment can be observed by 2-D gel electrophoresis. Problems arise in identifying the thousands of proteins that are found in cells that have been separated on the 2-D gels. The mass spectrophotometer is used to identify a protein isolated from the gel by identifying the amino acid sequence and comparing it to known sequence databases. Unfortunately, these methods require multiple steps to analyze a small portion of the proteome.
In recent years, technologies have been developed that can relate gene expression to protein production structure and function. Automated high-throughput analysis, nucleic acid analysis and bioinformatics technologies have aided in the ability to probe genomes and to link gene mutations and expression with disease predisposition and progression. The current analytical methods are limited in their abilities to manage the large amounts of data generated by these technologies.
One of the most recent advances in determining the functioning parameters of biological systems is the analysis of correlation of genomic information with protein functioning to elucidate the relationship between gene expression, protein function and interaction, and disease states or progression. Genomic activation or expression does not always mean direct changes in protein production levels or activity. Alternative processing of mRNA or post-transcriptional or post-translational regulatory mechanisms may cause the activity of one gene to result in multiple proteins, all of which are slightly different with different migration patterns and biological activities. The human genome potentially contains 100,000 genes but the human proteome is believed to be 50 to 100 times larger. Currently, there are no methods, systems or devices for adequately analyzing the data generated by such biological investigations into the genome and proteome.
Knowledge discovery is the most desirable end product of data collection. Recent advancements in database technology have lead to an explosive growth in systems and methods for generating, collecting and storing vast amounts of data. While database technology enables efficient collection and storage of large data sets, the challenge of facilitating human comprehension of the information in this data is growing ever more difficult. With many existing techniques the problem has become unapproachable. Thus, there remains a need for a new generation of automated knowledge discovery tools.
As a specific example, the Human Genome Project is populating a multi-gigabyte database describing the human genetic code. Before this mapping of the human genome is complete, the size of the database is expected to grow significantly. The vast amount of data in such a database overwhelms traditional tools for data analysis, such as spreadsheets and ad hoc queries. Traditional methods of data analysis may be used to create informative reports from data, but do not have the ability to intelligently and automatically assist humans in analyzing and finding patterns of useful knowledge in vast amounts of data. Likewise, using traditionally accepted reference ranges and standards for interpretation, it is often impossible for humans to identify patterns of useful knowledge even with very small amounts of data.
One recent development that has been shown to be effective in some examples of machine learning is the back-propagation neural network. Back-propagation neural networks are learning machines that may be trained to discover knowledge in a data set that may not be readily apparent to a human. However, there are various problems with back-propagation neural network approaches that prevent neural networks from being well-controlled learning machines. For example, a significant drawback of back-propagation neural networks is that the empirical risk function may have many local minimums, a case that can easily obscure the optimal solution from discovery by this technique. Standard optimization procedures employed by back-propagation neural networks may converge to an answer, but the neural network method cannot guarantee that even a localized minimum is attained much less the desired global minimum. The quality of the solution obtained from a neural network depends on many factors. In particular the skill of the practitioner implementing the neural network determines the ultimate benefit, but even factors as seemingly benign as the random selection of initial weights can lead to poor results. Furthermore, the convergence of the gradient based method used in neural net

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Enhancing biological knowledge discovery using multiples... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Enhancing biological knowledge discovery using multiples..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Enhancing biological knowledge discovery using multiples... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3197628

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.