Enhanced probe for gathering data from semiconductor devices

Active solid-state devices (e.g. – transistors – solid-state diode – Housing or package – With semiconductor element forming part

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S492000, C257S584000

Reexamination Certificate

active

06479892

ABSTRACT:

FIELD OF INVENTION
The present invention relates, in general, to probes that are used for gathering data with respect to semiconductor devices, and materials, and more particularly, to a novel probe for gathering data, including atomic force microscopy images of a semiconductor surface.
BACKGROUND OF THE INVENTION
In the past, the semiconductor industry has used scanning probe microscopy (SPM), such as atomic force microscopy (AFM), scanning capacitance microscopy (SCM), electrostatic/field force microscopy (EFM), scanning tunneling microscopy (STM), scanning thermal microscopy (SThM), to gather surface images and other types of data with respect to semiconductor devices. Specific types of data that can be gathered simultaneous with the gathering of surface images, more specifically topographical data, are thermal data, capacitance data, magnetic field data, electrical field data, and the like. One problem with prior AFM measurement apparatus and measuring techniques is the inability for the devices to provide simultaneous thermal images of a surface, capacitance data, electrical field data, and topographic data while maintaining optimal signal to noise ratio.
Typically, during the process of gathering surface image data, a scanning process is undertaken in which a probe tip is dragged across the surface of the semiconductor device in a rastering manner and the topography of the surface is measured by an optical signal which is reflected off of a mirror affixed to the probe. As another example, during the process of gathering thermal data, a scanning process is undertaken in which a probe tip includes a thermocouple. The thermocouple provides for thermal data to be collected by measuring the temperature of the surface as the probe is moved. During such processes in which data is gathered, amplification of the input signal is a requirement, and thus the inclusion of an amplifier within close proximity to the probe tip is required. More particularly, amplification of such things as the input current, voltage, electric field shifts, and the like, is required.
It is well known in the art to use such amplifiers to amplify the input signal. Generally, an amplifier is provided in conjunction with the probe, being formed as a separate integrated circuit, and spaced a distance, typically millimeters, away from the probe tip. This spacing of the amplifier remote from the probe tip provides for a decrease in signal to noise ratio, but does not overcome the detrimental noise level. In addition, typical probes as they are known today, require for a slow rastering of the probe across the surface. This provides for a very slow procedure for gathering data.
Thus, it is a purpose of the present invention to provide for an enhanced probe for gathering surface image data and additional informational data. More particularly, it is a purpose of the present invention to provide for an improved device and method of forming a conductive nano-probe that includes an amplifier incorporated into the probe tip or the amplifier as defining the probe tip.
It is a purpose of the present invention to provide for a conductive nano-probe that can simultaneously provide for the gathering of information data and a topographical image of a semiconductor surface.
It is yet still a further purpose of the present invention to provide for a probe that incorporates an amplifier for the purpose of amplifying an input signal so as to improve signal to noise ratio, and provide for enhanced gathering of data by the probe.
It is yet another purpose of the present invention to provide for an enhanced probe incorporating an amplifier to provide for the gathering of information in a timely manner.
It is still a further purpose of the present invention to provide for a method of fabricating a probe that provides for the fabrication of an amplifier within the probe or defining the probe.
SUMMARY OF THE INVENTION
The above problems and others are at least partially solved and the above purposes and others are realized in a probe tip that facilitates the gathering of data and a method of fabricating the probe tip. The probe includes an amplifier fabricated to define the probe tip. More particularly, the probe tip includes an amplifier formed as at least one of a metal oxide semiconductor (MOS) transistor, a bipolar amplifier, or a metal semiconductor field effect transistor (MESFET), thereby providing for the amplification of the input signal and increased signal to noise ratio during operation of the probe tip.


REFERENCES:
patent: 6218826 (2001-04-01), Nightingale
patent: 6232143 (2001-05-01), Maddix et al.
patent: 0905475 (1999-03-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Enhanced probe for gathering data from semiconductor devices does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Enhanced probe for gathering data from semiconductor devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Enhanced probe for gathering data from semiconductor devices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2929029

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.