Computer graphics processing and selective visual display system – Display driving control circuitry – Controlling the condition of display elements
Reexamination Certificate
2000-05-16
2004-10-05
Cabeca, John (Department: 2173)
Computer graphics processing and selective visual display system
Display driving control circuitry
Controlling the condition of display elements
C345S157000, C345S158000, C340S870030
Reexamination Certificate
active
06801231
ABSTRACT:
TECHNICAL FIELD
This invention generally relates to computer “mouse” devices. More particularly, the invention relates to a device held in the mouth and useful by individuals having limited or no use of their hands to simulate mouse manipulation in Graphical User Interface (GUI) applications.
DESCRIPTION OF THE RELATED ART
The device of the present invention is designed to greatly improve the ability of disabled individuals who have limited or no use of their hands to use software applications utilizing Graphical User Interfaces (GUIs). Each day, the ability to use GUIs or windows-based software applications on a personal computer becomes more essential to both personal and professional achievement. This capability is essential to take advantage of employment and educational opportunities both in and out of the computer industry. The most widely used computer operating system as well as most popular office applications (i.e., word processing, spreadsheet and presentation packages) all utilize GUIs. Moreover, with the advent of the Internet and the emergence of e-commerce, the ability to effectively and efficiently utilize GUIs will become critical in all aspects of life.
At the user level, GUIs are utilized by employing three basic computer mouse operations: (1) “point-and-click”; (2) “drag-and-drop”; and (3) “double-click”. However, while basic, these three operations actually require complex and coordinated hand and eye movements. The majority of computer operators take for granted the complex set of mouse movements, mouse clicks, and keyboard manipulations inherent in using GUI applications. Furthermore, the typical user is scarcely aware of the powerful user functionality created by the mouse and keyboard that allow him to efficiently utilize the software application. In fact, as a typical user's skill levels increase, the keystrokes and mouse clicks become more automatic and intuitive, causing the interface's look and feel to become deceptively easy to manipulate. However, for physically disabled individuals, the basic operations necessary to properly utilize GUIs and window-based applications are oftentimes arduous and cumbersome if not at times impossible.
Physically disabled individuals who lack the ability to utilize normal arm and/or hand movement must depend on assistive devices and/or software to help them control a computer in the same manner as a non-disabled user. Existing assistive devices do not provide disabled persons with a comparable ability to both manipulate screen objects using “point-and-click”, “drag-and-drop”, and “double-click” and to control the keyboard effectively and efficiently.
U.S. Pat. No. 4,828,418 to Sauer et al. discloses a representative prior art effort to develop a device to enable quadriplegic individuals with only limited or no use of the hands to perform certain task such a operating the keyboard of a personal computer. The Sauer device consists of a malleable mouthpiece attached to a shaft capable of having various implements fixed to it allowing the handicapped user to perform certain tasks independently. While the Sauer device can efficiently manipulate the keyboard, it cannot effectively control the mouse.
U.S. Pat. No. 5,422,640 to Haley discloses a breath actuated pointer device whereby a handicapped person can operate a personal computer. The Haley device consists of a base which includes an inclined support onto which a computer keyboard is positioned. An attachment arm supports a pivoting pointer which can be manipulated by the user to position the pointer over the appropriate key on the keyboard. The tip of the pointer is then actuated outwardly by the user imparting a breath into the breath port of the pointer. A pressure sensor transducer detects the user's breath and actuates a solenoid extending the tip of the pointer to depress the desired computer keyboard key. As with the Sauer device, the Haley device can also efficiently manipulate the keyboard, but cannot effectively control the mouse.
There are devices in the prior art which a capable of simulating mouse manipulation. Such devices can generally be categorized into one of the following groups: (a) numeric keypad mouse; (b) voice recognition systems; and (c) point and click headgear.
A numeric keypad mouse utilizes a separate numeric keypad on the main keyboard to simulate the movements of the computer mouse. For example, the numbers surrounding the numeral ‘5’(i.e., ‘2’, ‘6’, ‘8’, and ‘4’) on the keypad will move the cursor relative to its current position (i.e., down, right, up and left, respectively). More recent models of keyboards have individual arrow keys dedicated exclusively to cursor movements. Other keys are used to simulate double-click, right click, and left click of a computer mouse. For the disabled users who lack the ability to utilize normal arm and/or hand movement, the numeric keypad is typically used by striking the appropriate arrow and command keys with a mouthstick positioned in the user's mouth. However, using the mouthstick in such a manner prevents the user from being able to easily view the computer display screen while working because his eyes are focused on which key to strike (i.e., the user's head must be turned away from the display screen in order to press the arrow and command keys on the keyboard with the mouthstick.). To simultaneously press the keypad and focus on the display screen requires the user to position his eyes at the top of his eye sockets resulting in extreme eye fatigue. The user tends to use his peripheral vision to see where the cursor on the screen is moving. As a result, the user is easily fatigued.
Devices utilizing voice recognition systems are rapidly gaining acceptance in the computer industry. However, while voice recognition systems are evolving into a more dependable technology, there are several limitations inherent to applications involving physically disabled individuals. First, effective voice recognition depends on the clarity and consistency of the voice. A percentage of physically disabled individuals cannot speak clearly enough for the systems to work effectively. This is especially true for individuals with cerebral palsy or advanced multiple sclerosis. Additionally, many paralyzed individuals have breathing problems or simply lack the strength to effect consistent enunciation. Second, there are currently no voice recognition systems which are capable of both manipulation of the cursor in a GUI environment and text generation. Current voice recognition systems tend to work best in custom tailored direct data entry applications and not general computer applications.
There are a variety of point and click headgear mechanisms in the prior art. Point and click headgear devices generally utilize ultrasound or light detectors to position the cursor on the computer screen and a “sip-and-puff” device to simulate pressing the mouse buttons. “Sip-and-puff” refers to breath-operated devices wherein the user initiates commands to the control unit by either blowing or sucking air from the mouthpiece.
U.S. Pat. No. 5,126,731 to Cromer, Jr. et al. discloses a pneumatically-controlled, user-operated switch interface capable of enabling a disabled person to effectively operate a variety of control devices such as computer input devices, video game controllers and television remote controls. The Cromer device mimics the signals generated to a control device by wiring a pneumatically-controlled, user-operated switch interface in parallel with a computer control puck. Typically, an input device consists of two components: (a) a computer puck having manual switch buttons which communicate with (b) the digitizing tablet for collectively controlling the operation of the particular device. By wiring the pneumatically-controlled, user-operated switch interface in parallel with a computer control puck, the puck's signal output may be replicated by the device. While the Cromer device is suitable for manipulating a computer mouse, it provides no means for inputting data via the computer keybo
Cabeca John
Carstens David W.
Carstens Yee & Cahoon LLP
Degenfelder Jeffrey G.
Detwiler Brian
LandOfFree
Enhanced pointing device for handicapped users does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Enhanced pointing device for handicapped users, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Enhanced pointing device for handicapped users will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3332339