Enhanced offset stabilization for eccentric reamers

Boring or penetrating the earth – Bit or bit element – Bit with leading portion forming smaller diameter initial bore

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C175S335000, C175S399000

Reexamination Certificate

active

06739416

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to enlarging the diameter of a subterranean borehole and, more specifically, to enlarging the borehole below a portion thereof which remains at a lesser diameter. The method and apparatus of the present invention includes the enhanced capability to stabilize a reaming tool.
2. State of the Art
It is known to employ both eccentric and bi-center bits to enlarge a borehole below a tight or undersized portion thereof.
An eccentric bit includes an eccentrically, laterally extended or enlarged cutting portion which, when the bit is rotated about its axis, produces a borehole larger than the overall diameter of the eccentric bit. An example of an eccentric bit is disclosed in U.S. Pat. No. 4,635,738.
A bi-center bit assembly employs two longitudinally superimposed bit sections with laterally offset longitudinal axes. The first axis is the center of the pass-through diameter, that is, the diameter of the smallest borehole the bit will pass through. This axis may be referred to as the pass-through axis. The second axis is the axis of the hole cut as the bit is rotated. This axis may be referred to as the drilling axis. There is usually a first, lower and smaller diameter pilot section employed to commence the drilling and rotation of the bit centered about the drilling axis as the second, upper and larger diameter main bit section engages the formation to enlarge the borehole, the rotational axis of the bit assembly rapidly transitioning from the pass-through axis to the drilling axis when the full-diameter, enlarged borehole is drilled.
Rather than employing a one-piece drilling structure such as an eccentric bit or a bi-center bit to enlarge a borehole below a constricted or reduced-diameter segment, it is also known to employ an extended bottomhole assembly (extended bi-center assembly) with a pilot bit at the distal or leading end thereof and a reamer assembly some distance above. This arrangement permits the use of any bit type, be it a rock (tri-cone) bit or a drag bit, as the pilot bit. Further, the extended nature of the assembly permits greater flexibility when passing through tight spots in the borehole as well as an opportunity to effectively stabilize the pilot bit so that the pilot hole and the following reamer will take the path intended for the borehole. This aspect of an extended bottomhole assembly is particularly significant in directional drilling.
While all of the foregoing alternative approaches can be employed to enlarge a borehole below a reduced-diameter segment, the pilot bit with reamer assembly has proven to be highly effective. The assignee of the present invention has, to this end, designed as reaming structures so-called “reamer wings” in the very recent past, which reamer wings generally comprise a tubular body having a fishing neck with a threaded connection at the top thereof and a tong die surface at the bottom thereof, also with a threaded connection. As an aside, short-bodied tools frequently will not include fishing necks, including the short-bodied reamer wings designed by the assignee of the present invention. The upper midportion of the reamer wing includes one or more longitudinally extending blades projecting generally radially outwardly from the tubular body, the outer edges of the blades carrying superabrasive (also termed “superhard”) cutting elements; commonly, such superabrasive cutting elements, or cutters, are frequently comprised of PDC (Polycrystalline Diamond Compact) cutters. The lower midportion of the reamer wing may include a stabilizing pad having an arcuate exterior surface sized the same as or slightly smaller than the radius of the pilot hole on the exterior of the tubular body and longitudinally below the blades. The stabilizer pad is characteristically placed on the opposite side of the body with respect to the reamer wing blades so that the reamer wing will ride on the stabilizer pad due to the resultant force vector generated by the cutting of the blade or blades as the enlarged borehole is cut.
Notwithstanding the success of the aforementioned reamer wing design, it was recognized that such devices constructed as described above might not effectively and efficiently address the problem or task of achieving a rapid transition from pass-through to full-hole or “drill” diameter which closely tracks the path of the pilot bit and which does not unduly load the blades or bottomhole assembly during the transition. Since a reamer wing may have to re-establish a full-diameter borehole multiple times during its drilling life in a single borehole, due to washouts and doglegs of the pilot hole, a rapid transitioning ability when reaming is restarted as well as a robust design which can accommodate multiple transitions without significant damage was recognized as a desirable characteristic and design modification. U.S. Pat. No. 5,497,842, assigned to the assignee of the present invention and the disclosure of which is incorporated herein by reference, discloses the use of so-called “secondary” blades on the reamer wing to speed the transition from pass-through to drill diameter with reduced vibration and borehole eccentricity.
While the improvement of the '842 patent has proven significant, it was recognized that further improvements in the overall stability of the bottomhole assembly, including transitioning from pass-through diameter to drill diameter, would be highly desirable. One problem the prior art reamer assembly designs have experienced is undue vibration and even so-called bit “whirl,” despite the focused or directed force vector acting on the reaming assembly and the presence of the stabilization pad. These undesirable phenomena appear to be related to the configuration of the stabilization pad (illustrated in FIG. 5 of the '842 patent), which engages the borehole wall axially and circumferentially under the radially directed resultant force vector of the reamer wing as the assembly drills ahead in the pilot hole, due to the pad's abrupt radial projection from the reamer wing body. Furthermore, it was observed that the entire bottomhole reaming assembly as employed in the prior art for straight-hole drilling with a rotary table or top Be drive often experiences pipe “whip” due to lack of sufficient lateral or radial stabilization above the reamer wing. In addition, such reaming assemblies driven by downhole steerable motors for so-called directional or navigational drilling sometimes experience problems with stability under the lateral forces generated by the reamer wing so as to make it difficult to maintain the planned borehole trajectory.
U.S. Pat. No. 5,765,653, assigned to the assignee of the present invention and the disclosure of which is incorporated herein by reference, addresses the aforementioned problems by providing an axially as well as circumferentially tapered pilot stabilizer pad (“PSP”) (see FIGS. 4, 6, 7 and 7A of the '653 patent) to the reaming apparatus.
U.S. Pat. No. 5,957,223, assigned to the assignee of the present invention and the disclosure of which is incorporate herein by reference, also addresses stability of reaming tools. Specifically, the resultant lateral force vector generated via the pilot bit cutting elements is substantially radially aligned with the much larger lateral force vector generated by the reamer bit section. These two aligned force vectors thus tend to press the bit in the same lateral direction (which moves relative to the borehole sidewall as the bit rotates) along its entire longitudinal extent so that a single circumferential area of the pilot bit section gage rides against the sidewall of the pilot borehole, resulting in a reduced tendency for the bit to cock or tilt with respect to the axis of the borehole.
Furthermore, U.S. Pat. No. 6,116,356 assigned to the assignee of the present invention and the disclosure of which is incorporated by reference herein, provides a pilot stabilization pad (PSP) with an axially and circumferentially tapered, arcuate lower

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Enhanced offset stabilization for eccentric reamers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Enhanced offset stabilization for eccentric reamers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Enhanced offset stabilization for eccentric reamers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3197887

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.