Enhanced hybrid cell stent

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Arterial prosthesis – Stent structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06706061

ABSTRACT:

FIELD OF USE
This invention is in the field of stents for implantation into a vessel of a human body.
BACKGROUND OF THE INVENTION
Stents are well known medical devices that have been used for maintaining the patency of a large variety of vessels of the human body. The most frequent use is for implantation into the coronary vasculature. Although stents have been used for this purpose for more than ten years, many stent designs still lack the required flexibility and radial rigidity to provide an optimum clinical result. Another deficiency of open cell stents is that some stent struts members can flare outward (fish scaling) as the stent is advanced through a tight curve.
An open cell stent is defined as a stent that has circumferential sets of strut members with some curved sections (crowns) that are not connected by a longitudinal connecting link to an adjacent circumferential set of strut members. In comparison, a closed cell stent has every curved section of every circumferential set of strut members, except at the distal and proximal ends of the stent, attached to a longitudinal connecting link. A strut member whose curved section is not attached to a longitudinal connecting link is defined as an unconnected strut member.
There are several “open cell” stents that are currently being marketed for the treatment of coronary stenoses. Examples of these are the Tetra stent from Guidant Corporation and the S670 stent from Medtronics, Inc. Each of these stents has a limited number of straight longitudinal connecting links to join adjacent curved sections of adjacent circumferential sets of strut members. These straight longitudinal connecting links can cause outward flaring of the end circumferential sets of strut members as the stent bends around a curve. The interior unconnected strut members also can flare outward when the pre-deployed stent mounted on a balloon is advanced through a curved vessel such as a coronary artery. Any strut that flares outward can engage the vessel wall during stent delivery in a curved vessel thereby preventing the stent from reaching the site that is to be stented.
Most current open cell stents use a multiplicity of circumferential sets of strut members connected by straight longitudinal connecting links. The circumferential sets of strut members are typically formed from a series of diagonal sections connected to curved sections forming a closed-ring, zig-zag structure. This structure opens up as the stent expands to form the element in the stent that provides structural support for the arterial wall. A single strut member is defined as a diagonal section connected to a curved section within one of the circumferential sets of strut members. In current open cell stent designs such as the Tristar stent (Guidant Corp.) these sets of strut members are formed from a single piece of metal having a uniform wall thickness and uniform strut width. Although a stent with uniform width of the strut members will function, if the width is increased to add strength or radiopacity, the sets of strut members will experience increased strain upon expansion. High strain can cause cracking of the metal and potential fatigue failure of the stent under the cyclic stress of a beating heart.
Existing highly radiopaque stents such as the Crossflex coil stent (made from 0.005 inch diameter tantalum wire) by Cordis Corp. and the gold plated NIROYAL stent made by the Boston Scientific Co. can obscure the inside of the vessel because of the high radiopacity over the entire length of the stent. The Be stent of Medtronics, Inc., has small gold markers at the ends of the stent but those markers only mark an end point without allowing visualization of the entire end set of strut members. Fischell et al in U.S. Pat. No. 6,086,604 teaches a closed cell stent with the end sets of strut members being gold plated. Such a stent would have ideal radiopacity but could (like the Be stent) exhibit corrosion due to dissimilar metals placed in an electrolytic solution such as the blood. There has also been significant evidence that gold is a poor surface material for stents because it can increase the risk of subacute thrombosis and restenosis.
Fischell et al in U.S. Pat. No. 5,697,971 show in
FIG. 7
a stainless steel stent with increased width diagonal sections in all the circumferential sets of strut members. The U.S. Pat. No. 5,697,971 does not teach the use of a variable width for diagonal sections as a means to tailor the stent radiopacity. The U.S. Pat. No. 5,697,971 also does not teach specific metals and alloys having greater radiopacity than stainless steel, nor does it teach the use of the alternating curved sections and diagonal sections to form the circumferential sets of strut members. Furthermore, the U.S. Pat. No. 5,697,971 does not teach the use of variable width of curved sections that can provide additional radial rigidity and/or variable width diagonal sections to create relatively greater radiopacity for the end set of strut members.
SUMMARY OF THE INVENTION
The present invention is an open cell stent that is designed to optimize many of the operating parameters that are expected for stents in the first decade of the 21st century. Specifically, an optimum stent design would have the following characteristics:
I. IN THE PRE-DEPLOYED STATE
1. excellent flexibility
2. low profile (i.e.; small outside diameter of the stent)
3. good radiopacity
4. smooth outer surface
5. no flaring of struts when advancing through curved arteries
6. a high degree of stent retention onto the delivery catheter
II. AFTER DEPLOYMENT
1. flexible so as to conform to a curved artery
2. radially rigid (i.e.; low recoil)
3. good radiopacity
4. good coverage of the vessel wall (i.e.; no plaque prolapse)
5. side branch access without strut breakage
6. minimal foreshortening compared to the length of the stent in its pre-deployed state
Although many desirable attributes are required of the catheter that is used to deliver the stent, the scope of the present invention is limited to the design of the stent itself However, it should be understood that the reduced foreshortening of this stent is a result of having undulating longitudinal connecting links that readily extend in their longitudinal length when the balloon onto which the stent is crimped is inflated.
To accomplish the goals listed in I. and II. above, the stent would optimally have at least two open cells around the circumference of the stent. A unique feature of the present invention is that each of the strut members whose curved sections are unconnected has a shorter longitudinal length as compared to the longitudinal length of the strut members that are connected by a longitudinal connecting link. This shorter length (optimally on the order of at least 0.1 mm shorter) reduces outward flaring of the unconnected strut members when the stent is advanced through highly curved vessels such as some coronary arteries. Flaring (which is sometimes called “fish-scaling”) can cause the stent to engage the vessel wall as the stent is advanced through curved arteries thus precluding delivery of the stent to its intended location.
Another novel feature of this stent is that the longitudinal connecting links can have an undulating shape so that they can easily expand or contract in their longitudinal length when the stent is advanced through a curved vessel. The extraordinary capability of this stent to bend easily is a combination of the fact that those curved sections of adjacent circumferential sets of strut members that are connected are connected with flexible longitudinal connecting links, and many (typically one-half) of the curved sections are unconnected. Of course, the weakest possible connection that provides the highest degree of longitudinal flexibility is being unconnected. Therefore, the combination of no connections plus the few required connections between the circumferential sets of strut members being by means of highly flexible undulating longitudinal connecting links imparts to this stent an extraordinarily high degree of longitudinal

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Enhanced hybrid cell stent does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Enhanced hybrid cell stent, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Enhanced hybrid cell stent will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3200247

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.