Compositions – Heat-exchange – low-freezing or pour point – or high boiling... – Organic components
Reexamination Certificate
1998-11-24
2001-04-24
Lovering, Richard D. (Department: 1712)
Compositions
Heat-exchange, low-freezing or pour point, or high boiling...
Organic components
C165S104190, C516S033000
Reexamination Certificate
active
06221275
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention is directed to a method of enhancing heat transfer in fluids and to fluids embodying means for enhancing heat transfer. In particular, it is a method of increasing heat transfer in fluids by dispersing nanoconducting particles in the fluids, and it is fluids containing dispersed nanoconducting particles.
Despite considerable previous research and development focusing on industrial heat transfer requirements, major improvements in cooling capabilities have been held back because of a fundamental limit in the heat transfer properties of conventional fluids. It is well known that metals in solid form have orders-of-magnitude larger thermal conductivities than those of fluids. For example, the thermal conductivity of copper at room temperature is about 700 times greater than that of water and about 3000 times greater than that of engine oil or pump oil, as shown in Table 1. The thermal conductivities of metallic liquids are much larger than those of nonmetallic liquids. Therefore, fluids containing suspended solid metallic particles are expected to display significantly enhanced thermal conductivities relative to conventional heat transfer fluids.
Low thermal conductivity is a primary limitation in the development of energy-efficient heat transfer fluids required in many industrial applications. To overcome this limitation, a new class of heat transfer fluids called nanofluids has been developed by suspending nanocrystalline particles in liquids such as water, oil, or ethylene glycol. The term nanocrystal is defined to mean a particle having a major dimension of less than 100 nanometers. For a spherical particle, the major dimension is the diameter of the sphere; for particles that are not spherical, the major dimension is the longest dimension. The resulting nanofluids possess extremely high thermal conductivities compared to the liquids without dispersed nanocrystalline particles. For example, 5 volume % of nanocrystalline copper-oxide particles suspended in water results in an improvement in thermal conductivity of almost 60% compared to water without nanoparticles. Excellent suspension properties are also observed, with no significant settling of nanocrystalline oxide particles occurring in stationary fluids over time periods longer than several days. Direct evaporation of copper nanoparticles into pump oil results in similar improvements in thermal conductivity compared to oxide-in-water systems, but importantly, requires far smaller concentrations of dispersed nanocrystalline powder.
Numerous theoretical and experimental studies of the effective thermal conductivity of dispersions containing particles have been conducted since Maxwell's theoretical work was published more than 100 years ago. However, all previous studies of the thermal conductivity of suspensions have been confined to those containing millimeter- or micron-sized particles. Maxwell's model shows that the effective thermal conductivity of suspensions containing spherical particles increases with the volume fraction of the solid particles. It is also known that the thermal conductivity of suspensions increases with the ratio of the surface area to volume of the particle. Using Hamilton and Crosser's model, we have calculated that, for constant particle size, the thermal conductivity of a suspension containing large particles is more than doubled by decreasing the sphericity of the particles from a value of 1.0 to 0.3 (the sphericity is defined as the ratio of the surface area of a particle with a perfectly spherical shape to that of a non-spherical particle with the same volume). Since the surface area to volume ratio is 1000 times larger for particles with a 10 nm diameter than for particles with a 10 mm diameter, a much more dramatic improvement in effective thermal conductivity is expected as a result of decreasing the particle size in a solution than can obtained by altering the particle shapes of large particles.
SUMMARY OF THE INVENTION
It is therefore an object of the invention to provide an improved method of enhancing heat transfer in fluids.
It is a further object of the invention to provide improved fluids having enhanced properties of heat transfer due to the dispersion in the fluids of nanoparticles of conducting solids.
It is a further object of the present invention to provide an improved method of introducing to a fluid particles having thermal conductivities higher than the thermal conductivity of the fluid.
It is a further object of the present invention to provide an improved fluid having enhanced thermal conductivity due to the dispersion in the fluid of thermally conducting nanoparticles.
These and other objects, advantages and features of the invention will become apparent from the following detailed description when taken in conjunction with the accompanying drawings.
REFERENCES:
patent: 3180835 (1965-04-01), Peri
patent: 5147841 (1992-09-01), Wilcoxon
patent: 4131516A1 (1993-04-01), None
Hidetoshi Masuda et al., “Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of Al2O3, SiO2, and TiO2Ultra-Fine Particles)”, Netsu Bussei 7 (4) (1993) 227-233.
Stephen U.S. Choi, “Enhancing Thermal Conductivity of Fluids with Nanoparticles”,Developments and Applications of Non-Newtonian Flows, eds. D.A. Siginer et al., The American Society of Mechanical Engineers, New York, FED-Fol. 231/MD-vol. 66, pp. 99-105 (Nov. 1995).
Shinpyo Lee et al., “Application of Metallic Nanoparticle Suspensions in Advanced Cooling Systems”,Recent Advances in Solids/Structures and Application of Metallic Materials, eds. Y. Kwon et al., The American Society of Mechanical Engineers, New York, PVP-vol. 342/MD-vol. 72, pp. 227-234 (Nov. 1996).
J.A. Eastman et al., “Enhanced Thermal Conductivity Through the Development of Nanofluids”, Submitted to the Proceedings of the Symposium on Nanophase and Nanocomposite Materials II, Mat. Res. Soc. 1996 Fall Meeting, Boston, MA (Dec. 1996).
“New Nanofluids Increase Heat Transfer Capability”, Tech Transfer Highlights vol. 8, No. 2, (1997).
M. Wagener et al., “Preparation of Metal Nanosuspensions by High-Pressure DC-Sputtering on Running Liquids”, Mat. Res. Soc. Symp. Proc. vol. 457 (1997) pp. 149-154.
Choi Stephen U. S.
Eastman Jeffrey A.
Foley & Lardner
Lovering Richard D.
Rechtin Michael D.
University of Chicago
LandOfFree
Enhanced heat transfer using nanofluids does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Enhanced heat transfer using nanofluids, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Enhanced heat transfer using nanofluids will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2464429