Enhanced harmonica

Music – Instruments – Wind

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C084S378000, C084S379000

Reexamination Certificate

active

06359204

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to improvements in the structure and function of a musical instrument. The present invention more particularly relates to improvements in the structure and function of a harmonica.
2. Background Information
Harmonicas are among the world's oldest and most popular musical instruments. Harmonicas produce musical tones by a player blowing or drawing air into the harmonica to vibrate one or more of the reeds of the harmonica. One form of the harmonica is the ten-hole diatonic harmonica. In a diatonic harmonica, twenty reeds produce nineteen natural tones, with one tone being duplicated. The ten-hole diatonic harmonica typically has ten blow reeds, which sound in response to air blown into the harmonica by positive oral pressure; and ten draw reeds, which sound in response to air drawn in through the harmonica by negative oral pressure. The nineteen tones allow the player to play all the diatonic tones of a middle octave and most of the tones of a lower and a higher octave.
A moderately advanced diatonic harmonica player can produce twelve additional tones by a process known as “bending,” whereby the player modifies the resonant volume in the vocal passage, principally with the tongue, to “bend” or adjust the tone produced to achieve the desired pitch. A “bend” is therefore a procedure involving the adjustment of the player's embouchure wherein a tone is flatted by causing the normally idle lower-pitched reed of the reed pair in a harmonica to vibrate in its opening mode.
A more advanced player can also produce four additional tones by a technique known as “overblowing,” whereby the player more strictly matches the appropriate resonant volume with the tone he or she wishes to produce, typically causing the draw reed of the first, fourth, fifth, and sixth holes to produce tones corresponding to a flatted third of the low octave and a flatted third, fifth, and seventh respectively of the middle octave. Similarly, drawing and a strictly controlled shaping of the resonant passage will produce “overdraw” tones from the blow reeds corresponding to a sharped first, fifth and eighth of the highest octave. On an ordinary diatonic harmonica tuned to the key of C, the overblow tones are Eb-4 of the low octave, Eb-5, F#-5 and Bb-5 of the middle octave, and the overdraw tones are C#-6, G#-6 and C#-7 of the highest octave. Overblow and overdraw tones can be produced from all holes of the diatonic harmonica, but except for those listed, tones can be produced more easily with other techniques. See, e.g., U.S. Pat. No. 5,739,446 to Bahnson. Therefore, an overblow or overdraw procedure is one in which the tone is sharped by causing the higher pitched reed in a harmonica reed pair to vibrate in its opening mode. Overblow occurs on the first six holes of a standard diatonic harmonica wherein the higher-pitched reed is the draw reed; overdraw occurs on the last four holes of a standard diatonic harmonica wherein the higher-pitched reed is the blow reed.
In all, the most skilled diatonic harmonica player can produce a total of thirty-eight tones from the ten-hole diatonic harmonica, using the normal playing, bending, overblowing, and overdrawing techniques. A problem with any musical instrument, including the diatonic harmonica, is that not all players are highly skilled or even moderately advanced at playing the instrument, and a majority of instrument players are at skill levels far below the advanced level and cannot significantly improve their skills even with much practice.
The technique of “overblowing” is extremely difficult and diatonic harmonica players, even those of great skill, have been known to practice the technique for years before feeling comfortable enough to use the technique in a live performance. The same can be said of the “overdrawing” technique.
Because the seven tones achieved by overblowing or overdrawing are not readily achieved on a ten-hole diatonic harmonica, many less-advanced players resort to a chromatic harmonica, which offers a full chromatic scale of semitones by means of a slide that directs air to reeds pitched a semitone higher than those activated without the slide. However, the chromatic harmonica is not as adaptable as the diatonic harmonica to musical expression such as the type of expression experienced in blues, country, soul, and jazz harmonica music. Although the chromatic scale is easier to play on the chromatic harmonica than on the diatonic, its more limited expression makes it less enjoyable for many, including both listeners and players.
The construction of the diatonic harmonica (See, e.g.,
FIG. 1
) includes a set of ten flexible metallic reeds affixed to a flat reed plate containing rectangular slots through which the reeds vibrate. The typical construction provides an individual reed for each slot. Two such sets of reed plates are typically attached to opposing faces of a comb, thereby creating ten cells, each allowing two notes to be played per cell of the comb: one when blowing and one when drawing.
There are, however, limitations associated with this construction. The usual mechanical connection of reeds on a top surface of the reed plate can create a gap at the reed tip and along the lateral sides or flanks of the reed through which air may leak during play. When the reed vibrates due to a physical influence such as the blowing or drawing action of a musician, these gaps can widen and narrow to permit the reed to vibrate. However, when vibration is initiated, these gaps can also result in one or more unsatisfactory air leaks that can cause the player to blow more forcefully, alter his embouchure, and possibly stop reed vibration from occurring.
This problem is especially acute when attempting to play notes arising from a “bent,” “overblown” and/or “overdrawn” procedure. These notes are characterized by an anomalous physical behavior of two given reeds positioned in a cell of the harmonica. As shown in Bahnson et al., “Acoustic and Physical Dynamics of the Diatonic Harmonica,”
Journal of the Acoustical Society of America
. Vol. 103(4), pp. 1234-1244, 1998, when one of these maneuvers is performed and achieved, the normally stationary reed can be caused to vibrate while the normally active reed is caused to close. In the case of the overblow procedure, for example, the draw reed operates in an “opening” fashion while the blow reed operates in a “closing” fashion.
As previously discussed, the gap formed between the blow reed and its corresponding slot can create an air leak during this procedure. Consequently, there may be insufficient air pressure to induce vibration in the opening reed. Furthermore, the acoustic impedance of the oral-reed system may be affected so as to prevent vibration, or cause dissonant vibration within the harmonica.
An additional problem associated with conventional harmonica play is the occurrence of aberrant and discordant whistling or squeaking sounds while attempting to play a note. These aberrant sounds can be particularly problematic while attempting an overblow or overdraw procedure. The cause of this phenomenon is the establishment of “edge tones” created by the flow of air through a gap or gaps formed between one or more reeds and the reed plate and subsequent torsional vibration of the reed.
Another problem associated with conventional harmonicas is the difficulty in aligning the reeds within the reed slots of the reed plate during assembly. The clearance between the lateral edges or flanks of the reeds and the corresponding edges of the slot is typically small, in the approximate range of less than 0.002″. Because the reed is often affixed to the reed plate with a single rivet or other similar mechanical fastener, it is possible for the reed to rotate about the rivet thereby causing a nonparallel alignment between the rotated reed and the reed plate. Furthermore, irregularities or burrs introduced during fabrication of the reed or reed plate can adversely affect the free vibration of th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Enhanced harmonica does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Enhanced harmonica, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Enhanced harmonica will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2846182

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.