Marine propulsion – Engine – motor – or transmission control means – For engine speed
Reexamination Certificate
2003-02-25
2004-03-02
Morano, S. Joseph (Department: 3617)
Marine propulsion
Engine, motor, or transmission control means
For engine speed
C114S055500, C074S489000, C074S491000
Reexamination Certificate
active
06699085
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to an improved mechanism for controlling the speed of a personal watercraft. More particularly, the present invention relates to an improved throttle control system for a personal watercraft.
2. Description of Related Art
Personal watercraft are a relatively small sporty-type of watercraft wherein the rider sits or stands more on top of the watercraft than in other types of watercraft. Typically, a personal watercraft is designed to be operated by a single rider or operator, although accommodations are frequently made for one or more passengers.
Personal watercrafts are typically powered by an internal combustion engine. Fuel is supplied to the engine by charge formers, which can be carburetors or fuel injectors depending upon the application. Air is supplied to the engine by an air induction system. Located within the air induction system is one or more throttle valves that regulate the amount of air delivered to the engine. Because fuel flow is typically metered in proportion to the air flow, the throttle valves, in essence, control the power output of the engine and thus the speed of the watercraft as is well known in the art.
Personal watercraft typically include a handlebar that is mounted to an upper deck of the watercraft. The operator uses the handlebar to steer the watercraft. On the handlebars, near a grip, is a throttle lever. The throttle lever is typically directly coupled to the throttle valves by one or more cables. Accordingly, the operator controls the position of the throttle valves thereby the speed the watercraft by moving the throttle lever.
The throttle valves are normally biased to an idling position by one or more return springs. Another spring biases the throttle lever back to an unactuated position that corresponds to the idle position of the throttle valves. In order to further open the throttle valves and increase the speed of the watercraft, the operator typically grasps the throttle lever with one or more of her fingers and moves the lever towards the handlebar grip. When the operator releases the throttle lever, the return springs force the throttle valves and the throttle lever back to the idling position. Therefore, in order to maintain the speed of the watercraft, the operator must hold the throttle lever at a specific position against the return force of the return springs. Furthermore, if the operator's fingers slip, the throttle lever will return quickly to the idling position causing the watercraft to decelerate suddenly.
SUMMARY OF THE INVENTION
The prior art system for controlling the position of the throttle valves in a personal watercraft has several disadvantages. For example, to maintain the speed of the watercraft, the operator must hold the throttle lever against the force of the return springs. Accordingly, the operator's fingers may become tired after holding the throttle lever only for awhile. Another problem with the prior art system is that if the operator suddenly lets go of the throttle lever the throttle valves quickly return to their idling position causing the watercraft to decelerate quickly. This sudden deceleration can cause the watercraft to suddenly slip from a planing state to a non-planing state.
Accordingly, an aspect of at least one of the inventions disclosed herein involves a personal watercraft comprising a hull and an internal combustion engine disposed within the hull. The engine includes an air induction system that supplies air to the engine and has a throttle device to regulate the amount of air supplied to the engine. A steering mechanism steers the watercraft and includes a handlebar assembly coupled to the hull for this purpose. A throttle device control system includes a throttle operator that is located on the handlebar assembly and is arranged to be controlled by a rider of the watercraft. An operator position sensor is configured to detect the position of the throttle operator and to output a data signal that is indicative of the detected position of the throttle operator. A controller communicates with the operator position sensor to receive the data signal and is configured to output a control signal in response to the data signal. An actuator communicates with the controller. The actuator also is coupled to the throttle device and is adapted to adjust the throttle device in response to the control signal from the controller.
Another aspect of at least one of the inventions disclosed herein involves a personal watercraft comprising a hull and an internal combustion engine disposed within the hull. The engine includes an air induction system that supplies air to the engine and has a throttle device to regulate the amount of air supplied to the engine. A steering mechanism controls the steering movement of the watercraft and includes a handlebar assembly coupled to the hull. A throttle device control system includes a throttle operator that is located on the handlebar assembly and is arranged to be controlled by a rider of the watercraft. Means are provided for detecting a position of the throttle operator, and for moving said throttle device in response to the detected position of the throttle operator. Yet another aspect of the present invention involves a personal watercraft comprising a hull defining an engine compartment and an internal combustion engine disposed within the engine compartment. The engine includes an air induction system that supplies air to the engine and has a throttle device to regulate the amount of air supplied to the engine. A steering mechanism steers the watercraft and includes a handlebar assembly coupled to the hull for this purpose. A throttle device control system includes a throttle operator that is located on the handlebar assembly and is arranged to be controlled by a rider of the watercraft. An operator position sensor is mounted within the engine compartment and is configured to detect the position of the throttle operator and to output a data signal that is indicative of the detected position of the throttle operator. A controller communicates with the operator position sensor to receive the data signal and is configured to output a control signal in response to the data signal. An actuator mounted within the engine compartment communicates with the controller. The actuator also is coupled to the throttle device and is adapted to adjust the throttle device in response to the control signal from the controller.
A further aspect of at least one of the inventions disclosed herein involves a personal watercraft comprising a hull and an internal combustion engine disposed within the hull. The engine includes an air induction system that supplies air to the engine and has a throttle device to regulate the amount of air supplied to the engine. A steering mechanism controls the steering movement of the watercraft and includes a handlebar assembly coupled to the hull. A throttle device control system includes a throttle operator that is located on the handlebar assembly and is arranged to be controlled by a rider of the watercraft. Means are provided for detecting a position of the throttle operator, and for moving said throttle device in response to the detected position of the throttle operator.
Further aspects, features, and advantages of the inventions disclosed herein will become apparent from the detailed description of the preferred embodiments which follows.
REFERENCES:
patent: 3645151 (1972-02-01), Yoshsikawa
patent: 3845847 (1974-11-01), Camp
patent: 4138601 (1979-02-01), Nakamura et al.
patent: 4186291 (1980-01-01), Swanson
patent: 4191065 (1980-03-01), Golobay et al.
patent: 4213513 (1980-07-01), Beck
patent: 4286700 (1981-09-01), Morris et al.
patent: 4364283 (1982-12-01), Ricardo
patent: 4435961 (1984-03-01), Stewart
patent: 4701740 (1987-10-01), Reuss et al.
patent: 4838113 (1989-06-01), Matsushima et al.
patent: 4847454 (1989-07-01), Hiruma
patent: 4870933 (1989-10-01), Mizuno
patent: 4899610 (1990-02-01), Bourret
patent: 5097789 (1992-03-01), Oka
Knobbe Martens Olson & Bear LLP
Morano S. Joseph
Olson Lars A.
Yamaha Hatsudoki Kabushiki Kaisha
LandOfFree
Engine power output control for small watercraft does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Engine power output control for small watercraft, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Engine power output control for small watercraft will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3199001