Engine cycle and fuels for same

Power plants – Fluid within expansible chamber heated or cooled – Special motive fluid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C060S514000, C060S515000, C060S649000, C060S651000, C060S671000

Reexamination Certificate

active

06250078

ABSTRACT:

BACKGROUND OF THE INVENTION
Engines have provided an invaluable service to mankind by performing work at a rate that is many times what man can do. Over about 200 years, piston engines have evolved into quite sophisticated devices for converting heat energy into motive force. Steam engines were developed first. Here heat is provided to an external boiler to produce a reservoir of hot steam. The steam is admitted into a cylinder with a movable piston, which then moves, consuming energy from the steam and exerting force on a crankshaft. Later, internal combustion engines were developed. These engines take in air and mix it with a fuel. The fuel/air mixture is ignited in a cylinder with a movable piston to provide hot combustion gases that exert a force on the piston, which in most engines is coupled to and drives a crankshaft. Internal combustion engines, in particular, are relied upon for a wide variety of applications, inasmuch as they are in many ways more convenient than their steam counterparts, especially for mobile applications where high power to weight ratios are necessary. There are two types of engines, which are classified by their cycles.
Two-stroke cycle engines tend to be high power, high speed, and simple, but dirty and inefficient. They have high power for their size, inasmuch as the power stroke occurs twice as often for any given speed of crankshaft rotation, compared to four-stroke cycle engines. Two-stroke engines tend to be dirty and inefficient because intake and exhaust are not accomplished by separate strokes but rather are accomplished by slot(s) in the bottom the cylinder which allow the exhaust gases to leave and fresh air and fuel to be inducted. Since this is done in a very short amount of time, exchange of the gases is incomplete, leading to inefficiency. Further, although there are other methods of lubrication, most 2-stroke engines are lubricated by addition of the lubricating oil to the fuel itself. The oil is, therefore, also burned in an inefficient pollution-creating manner.
Four-stroke cycle engines are by far the most commonly used engines. They have separate intake and exhaust strokes as well as a power stroke and a compression stroke. The separation of intake and exhaust ensures intake of sufficient air to complete combustion of the fuel and almost complete exhausting of combustion products. However, the power strokes only occur once in each four piston strokes, as compared to once in every two stokes in two-stroke cycle engines, so the power is less for the same size and speed of the engine. While the four-stroke engine runs cleaner and consumes fuel more efficiently, other things occur that make a four-stroke engine run with about the same net efficiency as a two-stroke engine. For one thing, in a four-stroke cycle engine, energy is consumed in the intake and exhaust stroke as well as the compression stroke. (The exhaust stroke uses energy, but it is small compared to that used in the intake and compression strokes.)
The two major types of four-stroke cycle engines, the Otto cycle and the Diesel cycle, differ only in how the ignition of the fuel is accomplished, the compression ratios and the method of delivering fuel to the cylinders. The energy and power considerations remain the same.
It is well known from thermodynamic laws that there is a direct correlation between the maximum available efficiency of an engine verses its compression ratio. The diesel engine has the advantage in efficiency with its higher compression ratio. For this discussion, however, the more general term “expansion ratio” will be used, since this is actually what produces power and determines efficiency. Furthermore, since the present invention has no compression stroke, as described below, the notion of a compression ratio is not applicable.
The (ideal) work available from a fixed amount (in this case one mole) of gas at a given temperature T (in degrees Kelvin) expanded in volume at an initial pressure P
1
to a final pressure P
2
is given by Equation 1.
W=RT
ln(
P
1
/
P
2
)  (1)
The units chosen for R, the universal gas constant, determine the units that the energy is expressed in. If Joules are desired, then R=8.314. One uses ideal equations, inasmuch as that gives a maximum obtainable, and it is correct to compare maximums to see if a potential improvement is obtainable. In a real engine many other variables come into play. One important factor, in particular, is the ratio of the specific heat at constant temperature and constant pressure of the gases in the cylinder. However, these gases are dictated by the choice of fuel and therefore are not a variable for an engine cycle according to the present invention. The equivalence ratio is a variable and can effect the Cp/Ct ratio. That is discussed below.
For any given temperature, the ratio of the beginning and ending pressures (which is the expansion ratio) determines how much energy can be extracted. In a conventional two- or four stroke cycle engine, equation (1) also calculates the amount of energy required to compress the gases during the compression stroke. If T were constant one would not expect to extract any energy from such a system. The reason net energy is extracted is that T for combustion during the power stroke is much higher than T for the compression stroke. The intake and exhaust strokes consume much less energy since the chamber is open to the atmosphere and the pressure differentials (P
1
/P
2
) are much smaller.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a high power, high efficiency engine cycle that is carried out in a reciprocating-piston engine. Another object is to provide an engine cycle that operates with no pollution or very low pollution by virtue of the nature of the “fuels” used. By utilizing a different set of fuels in combination with an engine constructed to utilize the power cycle of the present invention, many problems common to today's fossil fuel, air-aspirated, piston engines, are eliminated. The engine cycle of the present invention has been named the “Amendola cycle,” and an engine operating with the Amendola cycle is sometimes referred to hereinafter as the “ACE.”
The Amendola cycle is carried out in a reciprocating piston/cylinder engine and consists of a working stroke in which exothermic decomposition of at least one liquid compound is caused to occur without combustion and produce a gaseous product of the decomposition which drives the piston along the cylinder in one direction, and an exhaust stroke in which the products of the decomposition are exhausted from the cylinder upon return movement of the piston. The decomposition of the liquid compound may be produced by catalysis in the engine cylinder chamber or a chamber in free communication with the cylinder chamber or in a pressure vessel separate from the engine and communicating with the cylinder chamber through a valve. Alternatively, decomposition of the liquid compound may be produced by heating the liquid compound, again in the cylinder chamber, a chamber freely communicating with the cylinder chamber, or a separate pressure vessel.
As described below, it is possible—and it may be advantageous—to use a plurality of liquid compounds in the power stroke. When liquid compounds cannot be mixed, one liquid compound is decomposed in a first pressure vessel separate from the engine and a second liquid compound is decomposed in a second pressure vessel separate from the engine and separate from the first pressure vessel.
Suitable compounds for use in an ACE include hydrogen peroxide, hydrazine, ammonium azide, hydrazinium azide, hydrazinium nitrate, ammonium nitrate, ammonium perchlorate, and amine-nitrocompounds. In some cases, the liquid compound(s) is a substance(s) dissolved in water. It is possible, and may be advantageous, to use a substance in the working stroke that reacts with a product of the decomposition of the liquid compound(s).
The Amendola cycle begins with “fuel” injection as the piston approaches Top Dead Center (TDC) in the cylinder.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Engine cycle and fuels for same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Engine cycle and fuels for same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Engine cycle and fuels for same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2519839

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.