Engine charge air cooler

Internal-combustion engines – Charge forming device – Cooling of combustible mixture

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C123S542000, C123S563000, C123S041310, C062S323100, C062S275000, C060S599000, C165S051000, C165S150000, C165S163000, C165S159000

Reexamination Certificate

active

06394076

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to charge air coolers and more particularly pertains to a new engine charge air cooler for providing enhanced cooling of the charge air received by an engine employing the invention.
2. Description of the Prior Art
The use of charge air coolers is known in the prior art. Specifically, the use of compressors to compress air entering an internal combustion engine is known to increase the power produced by the engine. The compressors, including superchargers and turbochargers, make the air entering the engine denser, and the denser contains more oxygen for combustion with the fuel. The pressurized air flow can also improve fuel atomization and thereby reduce undesirable emissions from the engine. However, compressing the air raises the temperature of the air, which tends to make the air less dense, and can also cause premature detonation of the fuel/air mixture in the engine. Further, a turbocharger, which uses the engine's hot exhaust gases to spin a turbine, tends to transfer heat from the hot exhaust gases to the air being compressed for introduction into the engine.
An intercooler is often interposed in the intake air path between the compressor and the engine for cooling the compressed “charge” air before it is introduced into the engine. Typically, the intercooler is of the “air-to-air” type that uses cooler atmospheric air to absorb some of the heat from the compressed charge air. The “air-to-air” intercooler often relies upon vehicle movement to move or force the cooler atmospheric air through the fins of the intercooler, and thus becomes significantly less effective when the vehicle is not moving.
Further, the ambient temperature of the atmospheric air controls the effectiveness of the intercooler. On warmer days, the atmospheric air has less ability to remove heat from the compressed charge air since the difference in temperatures is less than on cooler days.
Also, the intercooler must be positioned in a location on the vehicle where an uninterrupted flow of cool air is available. This is often accomplished through special ducting in the vehicle (which is common in automobiles) or the placement of the intercooler in front of the engine coolant radiator (which is common in larger trucks). Each of these options has its drawbacks, with the option of mounting the intercooler forward of the radiator producing the undesirable result of reducing the effectiveness of the radiator and making the engine run warmer.
The engine charge air cooler according to the present invention substantially departs from the conventional concepts and designs of the prior art, and in so doing provides an apparatus primarily developed for the purpose of providing enhanced cooling of the charge air received by an engine employing the invention.
SUMMARY OF THE INVENTION
In view of the foregoing disadvantages inherent in the known types of charge air coolers now present in the prior art, the present invention provides a new engine charge air cooler construction wherein the same can be utilized for providing enhanced cooling of the charge air received by an engine employing the invention.
The general purpose of the present invention, which will be described subsequently in greater detail, is to provide a new engine charge air cooler apparatus which has many of the advantages of the charge air coolers mentioned heretofore and many novel features that result in a new engine charge air cooler which is not anticipated, rendered obvious, suggested, or even implied by any of the prior art charge air coolers, either alone or in any combination thereof.
To attain this, the present invention generally comprises an enhanced charge air cooling system for an internal combustion engine in a vehicle. The charge air cooling system comprises a charge air compressing system for providing compressed charge air to an engine intake. The charge air compressing system includes a charge air compressor for compressing atmospheric air received by the compressor and outputting the compressed charge air to the engine intake, a first conduit having a first end in communication of the outlet of the charge air compressor for receiving compressed charge air from the compressor, and a second conduit having a first end and a second end. The second end of the second conduit is in communication with the engine intake for supplying compressed charge air to the engine intake.
The charge air cooling system further comprises a refrigerant cycling system including a refrigerant fluid, a refrigerant compressor for increasing the pressure of refrigerant fluid passing through the compressor, a condenser for removing heat from refrigerant fluid passing through the condenser, and an expansion valve for reducing the pressure of refrigerant fluid passing through the expansion valve.
The charge air cooling system also includes a charge air cooling apparatus for transferring heat from the compressed charge air of the charge air compressing system to the refrigerant fluid of the refrigerant cycling system. The charge air cooling apparatus comprises a housing preferably having a substantially solid exterior wall and a pair of air openings and a pair of fluid openings. A charge air passage for charge air moving through the housing has an air inlet at one of the air openings in the housing and an air outlet at the other of the air openings in the housing. The air inlet is in communication with the second end of the first conduit for receiving compressed charge air from the charge air compressor, and the air outlet of the charge air cooling apparatus is in communication with the first end of the second conduit for discharging charge air to the engine intake.
A plurality of fins are positioned in the charge air passage of the housing such that the compressed charge air passes between the fins between the air inlet and the air outlet of the charge air passage. The fins are preferably oriented substantially parallel to each other, and ideally the fins are thin and elongated.
A fluid tube is provided in the housing with a fluid inlet at one of the fluid openings of the housing and a fluid outlet at the other of the fluid openings of the housing. The fluid inlet is connected to the expansion valve for receiving refrigerant fluid from the expansion valve as a relatively low pressure liquid, and the fluid outlet of the fluid tube is connected to an inlet of the compressor for expelling the fluid as a relatively low pressure gas. Preferably, the fluid tube passes through each of the fins in a plurality of locations, and the fluid tube is formed into a plurality of serpentine coils having straight sections oriented generally perpendicular to the longitudinal extent of the elongate fins.
Preferably, the refrigerant compressor of the system is adapted to also compress a separate flow of refrigerant fluid for an air conditioning system of the vehicle in addition to the refrigerant fluid of the system of the invention.
There has thus been outlined, rather broadly, the more important features of the invention in order that the detailed description thereof that follows may be better understood, and in order that the present contribution to the art may be better appreciated. There are additional features of the invention that will be described hereinafter and which will form the subject matter of the claims appended hereto.
In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the providing enhanced cooling of the charge air received by an engine employing the invention of description and should not be regarded as limiting.
As such, those skilled

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Engine charge air cooler does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Engine charge air cooler, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Engine charge air cooler will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2902889

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.