Energy systems

Heat exchange – Geographical

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C062S260000, C166S057000, C166S302000, C073S152130, C073S152330, C374S136000

Reexamination Certificate

active

06585036

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is directed to underground heat exchange systems; to apparatus and methods for installing a loop of pipe in a hole in the earth; and to thermally conductive filler materials for emplacement between the pipe loop and the interior hole wall.
2. Description of Related Art
The outstanding efficiency of closed loop ground source heat pumps is well known. In a typical system, for each unit of energy purchased from an electric utility to operate the system, 4 units of energy are extracted from or put into the earth in the form of heat. In order to exchange this heat with the earth, a closed loop pipe or series of closed loop pipes are buried in the ground. A heat exchange fluid is circulated through this buried pipe system. If a difference exists between the temperature of the fluid circulating in the pipe and the earth temperature, an exchange of heat occurs—primarily by conduction through the wall of the pipe. If the system is operating in the heating mode, heat is taken from the fluid inside of this circulating loop by a heat exchanger in the heat pump equipment. As this relatively cool water (35° F.) is circulated back through the relatively warm earth (65° F.), heat is transferred into the fluid, which is subsequently taken from this stream as it continues to circulate through the heat pump's heat exchanger. Similarly, if the system is operating in the cooling mode, the heat pump's heat exchanger puts heat into this circulating fluid. Then, as this relatively warm fluid (100° F.) is circulated through the relatively cool earth (65° F.), heat is given up to the earth and the relative cool fluid is circulated back to the heat pump to absorb more heat—and the process so continues. Because of its mass, the earth stays at a relatively constant temperature, providing a virtual limitless resource as a heat supplier and heat sink.
One reason ground source heat pumps have not been more widely used in the past is because of the expense involved in the design and installation of the circulating fluid pipe loop which must be buried in the ground. Many complex geological and installation parameters determine the rate of heat transfer between this buried heat exchanger and the earth and, subsequently, the operational performance and efficiency of the heat pump system. The uncertainty of the installation costs coupled with the uncertainty of the resulting operating efficiencies have made it difficult for a customer to predict the operating costs and the financial payback associated with installing a ground source heat pump system.
The present inventors have recognized that by having an independent company design, install, and own the ground heat exchange system or the ground loop, the uncertainty of installation costs and heat transfer is removed (from the customer's viewpoint).
Now, the customer simply “buys” kWh of energy from the ground system provider. The present inventors have recognized that the ground system is an on-site power plant and that by the placement of an energy meter on the ground system, the precise amount of energy being transferred to and from the earth can be determined and sold to a customer in the form of kWh, exactly like the customer purchases power from the electric company. With such a new method and system, as recognized by the present inventors, the customer, by adding the cost of the power supplied by the electric company to the power supplied by the ground system owner, may accurately evaluate the cost and return on investment of the ground source heat pump system compared to alternative heating and cooling systems.
Several companies in the past have produced “energy meters” that calculate and record energy extracted from a circulating water loop and bill the customer for the energy used. This has been done for many years in “district heating” applications in Europe. Such equipment only records heat flow in one direction—usually heat extracted from the flow stream, not heat rejected into the flow stream as would be the case in a heat pump in a cooling mode (air conditioning operation).
The prior art discloses a wide variety of earth heat exchange systems and methods for using energy transferred by such systems.
The prior art discloses the use of a common grout, typically a bentonite clay mixture, for use as a thermally conductive material between a pipe loop of an underground heat exchange system and the interior of a hole in which the loop is positioned.
The cost for the installation of certain prior art vertical ground source heat loops can account for nearly half of the total cost incurred in the installation of a geothermal heat pump system. In certain aspects, the heat loop installation consists of drilling a vertical well, placing a thermoplastic pipe “loop” in the wellbore, and filling the annular space between the loop and the well wall with a thermally conductive material. Several problems can arise in such methods: loop “insertion” difficulties caused by loop buoyancy; thermal conductivity and installation difficulties of borehole backfill materials; and environmental concerns.
Although the drilling of the hole may be relatively easy, certain problems may be encountered in inserting the loop. In most applications, the “loop” consists of a relatively lightweight thermoplastic pipe. One material of choice is polyethylene, with a specific gravity of approximately 0.955 gms/cc
3
lighter than water. This pipe material also has relatively poor stiffness. As a driller attempts to push the pipe down into a mud filled well, the natural buoyancy of the pipe resists these efforts. Since the pipe has poor longitudinal stiffness, the pipe tends to bend or curl inside the well, creating additional frictional drag against the well wall until the pipe can be pushed no deeper. Even when the pipe is filled with water, the loop still maintains considerable buoyancy because the drilled hole is filled with dense drilling mud. In soft geological formations, the driller must mix heavy drilling mud in order to transport drilled cuttings and to stabilize the hole. In most cases, bentonite clay is added to the drill fluid to reduce friction, prevent loss of circulation, and suspend solids. However, the result is residual heavy drilling fluid in the well, creating a very dense slurry of clay, sand, rock, etc.—with resulting high buoyancy and low surface tension. In order to overcome the buoyancy problems, the driller usually attaches a heavy steel or other weight bar to the leading end of the heat loop and “pulls” the loop to the bottom of the well. Once the loop hits bottom, the driller 1) remotely secures the loop in the hole to prevent it from floating up, 2) remotely detaches the steel bar from the loop, 3) and recovers the bar from the well, usually by a cable winch. The considerable efforts made to overcome buoyancy of the loop caused by the density of the drill fluid are time consuming, expensive, and hazardous to the integrity of the loop.
The ability of the loop to transfer heat is directly related to the efficient operation of a geothermal heat pump system. Great expense and many tests and studies have been performed in a search for an optimum thermally conductive material that can be economically placed in the annular space between the loop pipe and the wellbore wall. An ideal material would be: at least as thermally conductive as the native earth; be easily and reliably placed in the borehole; maintain conductivity “long term”, and be inexpensive.
In some applications, particularly those where a loop is installed below a water table, no “bore backfill” material is placed in the well. Over time, the water table may drop, leaving an insulating airspace between the loop and the borehole. This insulating airspace results in “hot loops”, and the heat pump system either works poorly or not at all.
Many conductive high solids and cementitious “grouts” have been developed which include a mixture of water and a relatively conductive solid such as silica sand or fly ash. In order to t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Energy systems does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Energy systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Energy systems will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3011870

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.