Energy guiding chain

Chain – staple – and horseshoe making – Chains – Conduit

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C248S049000

Reexamination Certificate

active

06745555

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to an energy guiding chain for guiding hoses, cables or the like that has numerous chain links, where adjacent chain links are connected to one another in articulated fashion, where the chain links have opposing straps with inside and outside lateral surfaces as well as narrow surfaces perpendicular thereto and essentially parallel to the longitudinal direction of the chain, at least some of the chain links have at least one cross-member connecting the straps, the articulated joint between adjacent chain links is located between the narrow surfaces of the straps, and the energy guiding chain can travel, forming a lower strand, a deflection zone and an upper strand.
Various generic energy guiding chains are known, in which adjacent straps have lateral overlapping areas provided with joint pins and corresponding recesses in order to assemble the articulated joint. The articulated joint is located half-way up the straps. An energy guiding chain of this kind is known, for example, from EP 0 803 032 B1. Although energy guiding chains of this kind have proven to be very effective in principle, they have the disadvantage that the articulated joints made of joint pins and corresponding recesses are subject to wear due to frictional forces. This wear leads to a certain need for repair and servicing of the energy guiding chain and, furthermore, is undesirable in certain fields of application, such as food production or the production of devices under clean-room conditions, such as semiconductor products.
Cable guiding devices are further known from EP 0 789 167 A1, for example, where the chain links are connected to one another in articulated fashion by a long, flexible strip, so that the cable guiding device can travel in virtually abrasion-free fashion. Because the long strip is mounted on the cross-members connecting the straps of a chain link, the articulated joints of the chain links are located at the lower end of the straps. Consequently, the neutral fibre of the cable guiding device—which does not change in length when the energy guiding chain bends, in contrast to the areas spaced apart at the height of the articulated joints—is also located at the lower end of the chain straps. However, this is a disadvantage in various applications.
BRIEF SUMMARY OF THE INVENTION
Consequently, an object of the invention is to provide an energy guiding chain that has articulated joints located between the narrow surfaces of the chain straps, allows low-wear, abrasion-free travel, and is simple and inexpensive to manufacture.
According to the invention, the object is solved by an energy guiding chain, in which the articulated joints include joint elements that are elastically deformable in the bending direction of the chain links and designed as separate components, where the joint elements extend at least partially between the inside and outside lateral surfaces of the straps. During pivoting motion, the elastically deformable joint element exerts elastic restoring forces on the two adjacent chain links, preferably through the entire pivoting angle. When the energy guiding chain is in an extended position, the joint element preferably extends straight in the longitudinal direction.
Due to the design of the energy guiding chain according to the invention, it is possible for the chain to travel without abrasion, where the position of the joint element on the straps, its dimensions and, in particular, the material it is made of can be optimally adapted to respective requirements, regardless of the design of the straps. For example, the straps and the joint elements can be made of different materials, particularly different plastic materials. The joint elements can be made of a material with high long-term flexural strength, notch resistance and/or suitable elasticity. The elastic properties of the joint element are preferably selected such that the joint element remains in the elastic range under every expected bending load and exerts elastic restoring forces on the straps connected by it in the event of deformation. The material of the straps can ensure particularly high dimensional stability (against tension, torsion and/or compression forces) and high flexural strength of the straps, and also of the chain links in general. In particular, the material can display low sliding friction, which is advantageous in energy guiding chains in which the upper strand slides on the lower strand when the energy guiding chain travels.
Because the straps and joint elements are designed as separate parts according to the invention, the straps can be designed to absorb virtually all compression and tension forces acting on the energy guiding chain in the longitudinal direction, while the function of the joint elements is exclusively limited to the formation of articulated joints subject to no significant load caused by compression or tension forces.
The joint element preferably extends entirely between the inside and outside lateral surfaces of the straps. The width of the joint elements can be exactly equal to the width of the straps at the height of the joint elements, thus avoiding areas of the joint elements projecting beyond the sides of the straps.
The chain links can each have an upper and lower cross-member, which close off the space between opposing straps from the outside, where one of the cross-members can also be designed as a split cross-member. In the design according to the invention, it is also possible when using engaging stops, for example, to provided only every second or third (etc.) chain link with cross-members. The cross-member connecting opposing straps can be integrally molded on the straps or mounted in detachable fashion, particularly by means of a suitable snap connection or other mounting elements. At least one of the cross-members is preferably of rigid design and mounted rigidly on the opposing straps.
When the energy guiding chain is in a straight position for assembly, the joint element is preferably located at a vertical distance between the upper and lower cross-members, if present, or between the mounting elements for cross-members, and at a vertical distance from the cross-members, particularly at a point near the middle of the strap height that is at least one-quarter of the strap height away from the lower edge of the straps. In particular, the joint element can be positioned half-way up the straps. In this way, the chain links can be arranged symmetrically relative to the neutral fiber of the energy guiding chain, where the neutral fiber does not undergo any change in length when the chain moves from a straight to a curved position. This is advantageous for various applications, because the lines guided inside are subjected to a more uniform load during bending motion of the energy guiding chain.
The chain links preferably have means for damping the noise caused by operation of the stops. The noise damping means are preferably designed as brakes arranged in the region of the stops and/or the corresponding stop surfaces. In particular, the noise damping means can be arranged in the pockets of the corresponding straps that accommodate the stops. The stop surfaces, which simultaneously delimit the pockets on the front sides of the straps and can therefore be of web-like design, can be of elastic design, for example by selecting a suitable material or material thickness, where the material of the stop surfaces can have a higher modulus of elasticity than the material of the adjacent strap areas. Alternatively and/or additionally, the stops themselves can be of elastic design, for example at least partially made of a material of elevated elasticity. Separate damping elements, such as damping strips made of a noise-damping material, can also be provided on the stops and/or corresponding stop surfaces, preferably inside the pockets accommodating the stops. The stops and the corresponding stop surfaces can additionally or alternatively be designed such that a first partial area of a stop comes into contact with a first partial ar

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Energy guiding chain does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Energy guiding chain, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Energy guiding chain will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3356116

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.