Energy guiding chain

Chain – staple – and horseshoe making – Chains – Conduit

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C248S049000, C248S051000

Reexamination Certificate

active

06425238

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to an energy guiding chain for guiding cables, hoses and the like, having a number of chain links connected to one another in articulated fashion which are formed by parallel straps connected by cross-members, which energy guiding chain can be moved in such a way that it forms an upper strand, a lower strand and a deflection zone connecting the two, where the upper strand rests on the lower strand, and where at least some of the chain links of the upper strand and/or the lower strand are provided with rollers which are arranged in such a way that, when the energy guiding chain travels, they can roll on running surfaces provided on the chain links of the opposite strand.
Furthermore, the invention relates to an energy guiding chain for guiding cables, hoses and the like, having a number of chain links connected to one another in articulated fashion which are formed by parallel straps connected by cross-members, which energy guiding chain can be moved in such a way that it forms an upper strand, a lower strand and a deflection zone connecting the two, where the upper strand rests on the lower strand.
BACKGROUND OF THE INVENTION
In some applications, energy guiding chains of this kind are of a considerable length which can be in the region of 100 meters or more. Thus, the drive must provide correspondingly high drive power in order to move the energy guiding chain. This is especially the case if the upper strand of the energy guiding chain rests on the lower strand during travel, as the corresponding sliding friction, which reaches a substantial magnitude with very long energy guiding chains, has to be overcome. The respective sliding surfaces of the chain links are subject to increased wear due to the friction between the upper strand and the lower strand.
As considerable tensile forces are required to move the energy guiding chain, a change in length also occurs in the energy guiding chain which can easily amount to up to roughly 8%, referred to the length of the unstressed chain. This change in length occurs as a result of the ever-present play between the chain links and the ever-present elasticity of the chain links. This elongation of the energy guiding chain generates corresponding stress on the hoses or the like guided by the energy guiding chain.
It is common practice to provide special support structures for particularly long energy guiding chains that support the upper strand so that the upper strand can be moved on this support structure. In order to facilitate the movement of the energy guiding chain, some of the chain links are provided with rollers that can roll along the support structure. However, the arrangement of support structures of this kind is very complex and, in addition, the support structure cannot be used when moving an energy guiding chain in which the upper strand is arranged above the lower strand. In this case, it has been proposed to design the support structure in such a way that the supporting members can be swung out to the side in order to be removed from the range of motion of the energy guiding chain. However, this requires a corresponding swivel mechanism, which requires appropriate maintenance and also restricts the travel speed of the energy guiding chain. On the whole, there are many fields of application of energy guiding chains in which support structures are not expedient, quite apart from the technical resources they require.
GB 1 444 307 A discloses an energy guiding chain in which the chain links are provided with supporting areas which are oriented in such a way that they combine to form a flat surface. The supporting areas are provided at the inner side of the loop of the energy guiding chain. Predetermined chain links are provided with supporting wheels which protrude beyond the plane of the adjacent supporting area, through a recess provided in the supporting area. An energy guiding chain is thus provided by means of which the supporting forces can be dissipated via the chain links in a favorable manner so that the chain links can be of light construction and higher supporting forces can be distributed.
SUMMARY OF THE INVENTION
The object of the present invention is to design an energy guiding chain in which the upper strand can be moved lying on the lower strand with the least possible power and low wear, and which is of the simplest possible design, and by which a simply constructed guidance of the energy transmission chain is provided, even in case of long energy guiding chains.
According to the invention, the object is solved in that the rollers have a guide profile, which is formed by several circumferential guide grooves positioned at a distance from one another in the running surface of the rollers. By these features of the rollers according to the present invention the travel characteristics can be further improved and an emission of noise can be further reduced, furthermore, friction between the lower strand and the upper strand can be lowered. Simultaneously, a reliable guidance of the energy guiding chain is provided.
Furthermore, it is an object of the present invention to provide an energy guiding chain having increased stability of the chain links, especially in case of long chain links.
According to the invention, this object is solved in that two cross-members at a distance from one another in the longitudinal direction of the chain are provided on one narrow side of a chain link.
When the rollers of two chain links equipped with rollers running on top of one another meet, they become offset by roughly the width of one groove due to the geometry of the guide grooves, so that the profiles of the meeting rollers mesh. The elasticity of the energy guiding chain easily permits the upper strand and the lower strand to run slightly offset relative to one another. This offset roughly corresponds to the width of one guide groove. This advantageously prevents the convergence of the two superposed strands when two rollers meet.
It is particularly advantageous if the depth of the guide grooves is at least equal to the distance the roller projects beyond the running surface of the associated chain strap. The rollers then need no longer climb up and down one another, and a considerable amount of tensile force that would otherwise have to be applied to the upper strand is eliminated. Approaching rollers can simply pass through one another.
The guide grooves are expediently provided with a roughly trapezoidal cross-sectional profile, which ensures the correct alignment of the rollers relative to one another.
In this context, the rollers in the sense of the invention should be taken as being elements that rotate when they contact the running surfaces and move relative to them. For example, areas on the chain straps projecting out to the side can be provided as running surfaces.
As a result of these measures, the upper strand can travel directly on the lower strand by means of the rollers, while the friction between the upper strand and the lower strand is dramatically reduced due to the rollers provided in accordance with the invention. For example, the friction of the energy guiding chain according to the invention is roughly 6 or more times less than that of a conventional energy guiding chain of similar design, meaning that the chain can be 6 or more times longer with the same drive.
Furthermore, as a result of the rollers provided, there is considerably less elongation of the chain as compared to conventional energy guiding chains travelling at the same speed. The wear on the contact surfaces between the upper strand and the lower strand is also markedly reduced.
As the running surfaces for the rollers of the opposite strand are located directly on the chain links, it is possible to design the energy guiding chain to be particularly lightweight, meaning that the length of the energy guiding chain and its travel speed can be correspondingly high.
The rollers can be directly mounted on the chain straps using appropriate bearings, and the roller mount can be correspondingly stable

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Energy guiding chain does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Energy guiding chain, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Energy guiding chain will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2840357

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.