Energy-enhancing supplement

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Food or edible as carrier for pharmaceutical

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S400000, C424S464000, C424S484000, C424S489000, C424S195150, C424S725000, C424S755000

Reexamination Certificate

active

06500452

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to dietary supplements. More particularly, it relates to dietary supplements formulated to increase energy available in cells of humans. The present invention relates to a combination of enzymatic and metallo-enzymatic cofactors and nutritional additives to increase the synthesis of adenosine triphosphate (ATP) in human cells. This increase in cellular ATP produces greater energy levels in humans.
BACKGROUND OF THE INVENTION
A major source of energy for the human body is derived from foods being broken down and utilized through metabolic pathways. In one such pathway, energy is stored in storage molecules as fats and carbohydrates. In another pathway, the products resulting from the break down of foods can be metabolically and enzymatically processed. It happens that these processes take place in the mitochondria of cells during cellular respiration. The chemical energy released during this respiration is captured in the form of adenosine triphosphate (ATP). The ATP then delivers the energy to the location within a cell where energy-consuming activities are taking place. Since ATP does not store energy, when energy is needed by the cell, storage molecules, such as glycogen, are converted to ATP.
ATP is a nucleotide that consists of three parts: a nitrogenous base, adenine; a sugar, ribose; and a chain of three phosphate groups bound to the ribose. Available energy is contained in the bonds between these phosphates, and is released when the bonds are broken. The bonds are broken in the presence of a molecule of water in a process called hydrolysis. Usually, when hydrolysis occurs, one phosphate is removed from ATP to yield energy. ATP is thus converted to adenosine diphosphate (ADP). While cells continuously break down ATP to obtain energy, ATP is also being synthesized from ADP and phosphate. It can be appreciated that the complex pathways by which energy is thus made available in the form of ATP are mediated by enzymes.
Coupled with ATP synthesis is the oxidation of carbohydrates and lipids via the mitochondrial electron transport chain (ETC). The ETC, or respiratory chain, is the system by which electrons, from the reduced electron carriers of intermediary metabolism, are channeled to oxygen and protons to yield water (H
2
O). The main components of the ETC are cofactors nicotinamide adenine dinucleotide (NAD) and its reduced form, NADH. The cofactors that participate in this process are flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), and nicotinamide adenine dinucleotide phosphate (NADP
+
). Enzymes catalyze the oxidation and reduction of these cofactors. These enzymes are usually very selective toward a particular cofactor in a particular oxidative state. Electrons are effectively transported as hydride ions (H

), which are formally equivalent to (H
+
+2e

).
The electron transport reactions for the respective cofactors can be expressed as follows:
NAD
+
+H
+
+2e

NADH;
FAD+2H
+
+2e

FADH
2
;
and
FMN+2H
+
+2e

FMNH
2
.
In order for electron transport to take place, the cofactors interact with a series of complexes which enzymatically catalyze the reduction reactions. These complexes, designated complex I, II, III, and IV represent the stages of enzymatic reduction which transports electrons. The final stage of electron transport may be referred to as complex V. It is now generally accepted that the coupling of electron transport and ATP synthesis is brought about by the action of a proton electrochemical-potential gradient. This gradient arises as a consequence of the electron transport and is dissipated by ATP synthase to generate ATP by combining ADP and inorganic Phosphate (P
I
). The organization of the electron transport chain in the mitochondria can be schematically represented as follows:
Basically, and without the introduction of the present invention, what occurs in complex I is that the molecule Coenzyme Q (CoQ or ubiquinone) undergoes reduction in its reaction with NADH to form reduced CoQ (CoQH
2
). In a separate reaction, complex II mediates electron transfer from succinate to CoQ, forming FAD from FADH
2
. As a result of these reactions, energy is transported to complex III. Complex III catalyzes electron transfer from reduced CoQ to a series of cytochromes. Cytochrome activity is in turn determined by the side chains on a porphyrin moiety which is the basis of the cytochrome molecule. Cytochrome c, for instance, requires a cysteine side chain on the porphyrin moiety for optimal function. It is known, however, that leucine and isoleucine can substitute for cysteine on this side chain. Electrons are channeled through complex IlIl to CoQ by an iron-sulfur protein. In this iron sulfur protein, the iron atoms are bound to the porphyrin by a cysteine group and sulfide ions. At complex IV cytochrome activity produces oxygen (O
2
) and creates a proton electrochemical-potential gradient. As mentioned above, this gradient is dissipated by ATP synthase in the formation of ATP from ADP and P
i
.
Because ATP does not store energy, it would be desirable to provide a source of energy that is readily available for the production of ATP in a human subject. It would further be desirable to enhance the formation of ATP by providing a formulation that would act to accelerate the enzymatic reactions of the electron transport chain. Such a formulation would increase the energy level in a human subject and provide a feeling of well being.
In light of the above, it is an object of the present invention to provide a source of energy that is readily available for the formation of ATP in human cells. Another object of the present invention is to provide a formula for a dietary supplement that will enhance the action of the electron transport chain to carry electrons more readily for the formation of the ATP. Yet another object of the present invention is to provide a dietary supplement to increase energy levels in humans that is easily ingested, is safe, and is comparatively cost effective.
SUMMARY OF THE PREFERRED EMBODIMENTS
The present invention is directed to a composition for a dietary supplement designed to provide a source of energy that is readily available for the production of ATP in human cells. To that end, the composition of the present invention is formulated to supply components which will enhance the enzymatic activity of the ETC and thus allow for increased formation of ATP, which in turn will provide energy for cellular activity.
Metabolic activity resulting in increased energy results from the formulation of active ingredients in the present invention. These ingredients are: 4-aminobenzoic acid, 4-hydroxybenzoic acid, L-cysteine, L-methionine, sodium molybdate, selenium, lithium bromide, horseradish powder, and shiitake mushroom powder. The active ingredients are combined with an inactive carrier, such as magnesium silicate powder (talc) to form a product for oral administration.
The composition of the present invention works during mitochondrial respiration to enhance the activity of the respective complexes in the transport of electrons for the formation of ATP. For example, complex I, the NADH/ubiquinone complex, requires metal cofactors for enzymatic or metabolic activity. These metal cofactors may include lithium, molybdate, selenium, copper, iron, magnesium, and zinc in specialized tissues. The composition of the present invention contains selenium, sodium molybdate, and lithium bromide to accelerate this step. It is noted that substitution by other bivalent metallic ions, including Zn, Mn, Se, Cr, Te, Co, Ni, Mg, Ba, and Sr in the enzymatic pathways may occur with changed efficiency.
At the complex III phase, 4-hydroxybenzoic acid (POBA) and 4-aminobenzoic acid (PABA) enter the ETC by linkage to the cysteine side chain in the iron sulfur protein. This cysteine side chain can also be substituted by methionine. It is further known that side chain substitution occurs with the cytochromes.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Energy-enhancing supplement does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Energy-enhancing supplement, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Energy-enhancing supplement will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2992336

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.