Energy conversion systems utilizing parallel array of...

Prime-mover dynamo plants – Miscellaneous – Drive gearing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C977S726000

Reexamination Certificate

active

07148579

ABSTRACT:
Nanoelectromechanical systems utilizing nanometer-scale assemblies are provided that convert thermal energy into another form of energy that can be used to perform useful work at a macroscopic level. These systems may be used to, for example, produce useful quantities of electric or mechanical energy, heat or cool an external substance or propel an object in a controllable direction. In particular, the present invention includes nanometer-scale beams that reduce the velocity of working substance molecules that collide with this nanometer-scale beam by converting some of the kinetic energy of a colliding molecule into kinetic energy of the nanometer-scale beam. In embodiments that operate without a working substance, the thermal vibrations of the beam itself create the necessary beam motion. In some embodiments, an automatic switch is added to realize a regulator such that the nanometer-scale beams only deliver voltages that exceed a particular amount. Various devices including, piezoelectric, electromagnetic and electromotive force generators, are used to convert the kinetic energy of the nanometer-scale beam into electromagnetic, electric or thermal energy. Systems in which the output energy of millions of these devices is efficiently summed together are also disclosed as well as systems that include nanometer-scale transistors.

REFERENCES:
patent: 2979551 (1961-04-01), Pack
patent: 3181365 (1965-05-01), Maninger
patent: 3252013 (1966-05-01), Stanton
patent: 3365653 (1968-01-01), Gabor et al.
patent: 3495101 (1970-02-01), Slonneger
patent: 3500451 (1970-03-01), Yandon
patent: 3508089 (1970-04-01), Cheshire
patent: 3609593 (1971-09-01), Boll et al.
patent: 4152537 (1979-05-01), Hansch
patent: 4387318 (1983-06-01), Kolm et al.
patent: 4536674 (1985-08-01), Schmidt
patent: 4595864 (1986-06-01), Stiefelmeyer et al.
patent: 4814657 (1989-03-01), Yano et al.
patent: 4966649 (1990-10-01), Harada et al.
patent: 5065085 (1991-11-01), Aspden et al.
patent: 5132934 (1992-07-01), Quate et al.
patent: 5216631 (1993-06-01), Sliwa, Jr.
patent: 5578976 (1996-11-01), Yao
patent: 5619061 (1997-04-01), Goldsmith et al.
patent: 5621258 (1997-04-01), Stevenson
patent: 5638946 (1997-06-01), Zavracky
patent: 5649454 (1997-07-01), Midha et al.
patent: 5677823 (1997-10-01), Smith
patent: 5768192 (1998-06-01), Eitan
patent: 5780727 (1998-07-01), Gimzewski et al.
patent: 5835477 (1998-11-01), Binnig et al.
patent: 5964242 (1999-10-01), Slocum
patent: 6011725 (2000-01-01), Eitan
patent: 6054745 (2000-04-01), Nakos et al.
patent: 6069540 (2000-05-01), Berenz et al.
patent: 6073484 (2000-06-01), Miller et al.
patent: 6114620 (2000-09-01), Zuppero et al.
patent: 6123819 (2000-09-01), Peeters
patent: 6127744 (2000-10-01), Streeter et al.
patent: 6127765 (2000-10-01), Fushinobu
patent: 6157042 (2000-12-01), Dodd
patent: 6160230 (2000-12-01), McMillan et al.
patent: 6256767 (2001-07-01), Kuekes et al.
patent: 6261469 (2001-07-01), Zakhidov et al.
patent: 6300756 (2001-10-01), Sturm et al.
patent: 6327909 (2001-12-01), Hung et al.
patent: 6424079 (2002-07-01), Carroll
patent: 6433543 (2002-08-01), Shahinpoor et al.
patent: 6445006 (2002-09-01), Brandes et al.
patent: 6445109 (2002-09-01), Per.cedilla.in et al.
patent: 6509605 (2003-01-01), Smith
patent: 6515339 (2003-02-01), Shin et al.
patent: 6528785 (2003-03-01), Nakayama et al.
patent: 6548841 (2003-04-01), Frazier et al.
patent: 6559550 (2003-05-01), Herman
patent: 6574130 (2003-06-01), Segal et al.
patent: 6593666 (2003-07-01), Pinkerton
patent: 6593731 (2003-07-01), Roukes et al.
patent: 6597048 (2003-07-01), Kan
patent: 6611033 (2003-08-01), Hsu et al.
patent: 6643165 (2003-11-01), Segal et al.
patent: 6653547 (2003-11-01), Akamatsu
patent: 6669256 (2003-12-01), Nakayama et al.
patent: 6672925 (2004-01-01), Talin et al.
patent: 6674932 (2004-01-01), Zhang et al.
patent: 6685810 (2004-02-01), Noca et al.
patent: 6708491 (2004-03-01), Weaver et al.
patent: 6722200 (2004-04-01), Roukes et al.
patent: 6730370 (2004-05-01), Olafsson
patent: 6756795 (2004-06-01), Hunt et al.
patent: 6762116 (2004-07-01), Skidmore
patent: 6774533 (2004-08-01), Fujita et al.
patent: 6803840 (2004-10-01), Kowalcyk et al.
patent: 6805390 (2004-10-01), Nakayama et al.
patent: 6806624 (2004-10-01), Lee
patent: 6828800 (2004-12-01), Reich
patent: 6846682 (2005-01-01), Heath et al.
patent: 6882051 (2005-04-01), Majumdar et al.
patent: 6911682 (2005-06-01), Rueckes et al.
patent: 6914329 (2005-07-01), Lee et al.
patent: 6953977 (2005-10-01), Mlcak et al.
patent: 2002/0024099 (2002-02-01), Watanabe et al.
patent: 2002/0039620 (2002-04-01), Shahlnpoor et al.
patent: 2002/0043895 (2002-04-01), Richards et al.
patent: 2002/0153583 (2002-10-01), Frazier et al.
patent: 2002/0167374 (2002-11-01), Hunt et al.
patent: 2002/0175408 (2002-11-01), Majumdar et al.
patent: 2002/0180306 (2002-12-01), Hunt et al.
patent: 2003/0036332 (2003-02-01), Talin
patent: 2003/0172726 (2003-09-01), Yasutake et al.
patent: 2003/0175161 (2003-09-01), Gabriel et al.
patent: 2004/0012062 (2004-01-01), Miyajima et al.
patent: 2004/0157304 (2004-08-01), Guo
patent: 2004/0239210 (2004-12-01), Pinkerton et al.
patent: 2004/0240252 (2004-12-01), Pinkerton et al.
patent: 2005/0037547 (2005-02-01), Berlin et al.
patent: 2005/0104085 (2005-05-01), Pinkerton et al.
patent: 2005/0179339 (2005-08-01), Pinkerton et al.
patent: 101 28 876 (2002-11-01), None
patent: 0518283 (1992-12-01), None
patent: 0977345 (2000-02-01), None
patent: 02004516 (1990-01-01), None
patent: WO 01/03208 (2001-01-01), None
patent: WO 0120760 (2001-03-01), None
patent: WO 0193343 (2001-12-01), None
patent: WO 02/080360 (2002-10-01), None
patent: WO 03/021613 (2003-03-01), None
patent: WO 03/078305 (2003-09-01), None
patent: WO 03/001657 (2003-10-01), None
Halliday et al.; “Physics. Third Edition”; John Wiley & Sons, Inc.; 1978; pp. 529-531.
Dresselhaus et al.; “Carbon Nanotubes: Synthesis, Structure, Properties, and Applications”; Springer-Verlag Berlin Heidelberg 2001; pp. 198-199, 292-293.
Kinaret J.M. et al. “A Carbon-Nanotube-Based Nanorelay”, Applied Physics Letters, American Institute of Physics, New York, USA, vol. 8, No. 8, pp. 1287-1289, Feb. 24, 2003.
U.S. Appl. No. 60/449,371, filed Feb. 21, 2003, Mullen.
U.S. Appl. No. 10/785,289, filed Feb. 23, 2004, Mullen.
Database Inspec Online!, Institute of Electrical Engineers, Stevenage, GB; Ponomarenko et al. “Properties of boron carbon nanotubes: density-functional-based tight-binding calculations,” Database accession No. 7588110, XP002278946, abstract Physical Review B (Condensed Matter and Material Physics), vol. 67, No. 12, pp. 125401-1-5, Mar. 15, 2003.
Sung et al. “Well-aligned carbon nitride nanotubes synthesized in anodic alumina by electron cyclotron resonance chemical vapor deposition,” Applied Physics Letters, vol. 74, No. 2, pp. 197-199, Jan. 11, 1999.
Rueckes et al., “Carbon nanotube-based nonvolatile random access memory for molecular computing,” Science, vol. 289 (Jul. 7, 2000), pp. 94-97.
Halg, Beat, “On a micro-electro-mechanical nonvolatile memory cell,” IEEE Trans., Electron Devices, vol. 37, No. 10 (Oct. 1990) pp. 2230-2236.
White D R et al., “The status of Johnson Noise Thermometry,” Metrologia Bur. Int. Polds & Measures, France, vol. 33, 1996, pp. 325-335.
Cleland el at., “Fabrication of High Frequency Nanometer Scale Mechanical Resonators from Bulk Si Crystals,” Appl. Phys. Lett., vol. 69, No. 18, Oct. 28, 1996, pp. 2653-2655.
Baughman et al. “Carbon Nanotube Actuators,” Science American Association for the Advancement of Science, U.S., vol. 284, May 21, 1999, pp. 1340-1344.
Dequesnes M et al., “Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches,” nanotechnology IOP publishing UK, vol. 13, Jan. 22, 2002, pp. 120-131.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Energy conversion systems utilizing parallel array of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Energy conversion systems utilizing parallel array of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Energy conversion systems utilizing parallel array of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3689687

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.