Power plants – Motive fluid energized by externally applied heat – Process of power production or system operation
Reexamination Certificate
2002-10-18
2003-08-19
Nguyen, Hoang (Department: 3748)
Power plants
Motive fluid energized by externally applied heat
Process of power production or system operation
C060S650000
Reexamination Certificate
active
06606860
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates, in general, to power generation and conversion, to cryogenic systems, and to improvements in heat engines and systems, and more particularly, to energy conversion systems and methods that utilizes a working fluid, such as a biatomic gas, that is recirculated within a high pressure tank that contains a compressor and is exposed to a heat exchange surface to enhance existing heat engine efficiencies and that further utilizes a cold reservoir to capture additional energy from the working fluid.
2. Relevant Background
Modem society has an insatiable and growing thirst for energy and for devices and systems that consume large quantities of energy. Presently, the largest sources of energy are non-renewable including the fossil fuels of coal, oil, and gas. Renewable energy sources are only a small portion of the global energy supply and include wind, solar, and geothermal sources. Energy sources are generally converted by conversion systems using heat engines and other devices into other forms of energy such as thermal energy (or heat) and mechanical energy. It is estimated that in the not too distant future non-renewable energy sources will become depleted or that the costs associated with converting these sources to heat and other useful energy will significantly increase causing many of these sources to be inaccessible to large parts of the population. Hence, there is an ongoing societal need for more efficient methods and systems for converting energy from non-renewable and renewable energy sources into clean, useful energy.
Common energy conversion systems employ heat engines to convert heat energy from renewable or non-renewable energy sources to mechanical energy. The examples of heat engines are numerous including steam engines, steam and gas turbines, spark-ignition and diesel engines, or external combustion and the Stirling engine. Each of these heat engines or systems can be used to provide the motive power or mechanical energy for transportation, for operating machinery, for producing electricity, and for other uses. Heat engines typically operate in a cycle of repeated sequences of heating and pressurizing a working fluid, performing mechanical work, and rejecting unused or waste heat. At the beginning of each cycle, energy in the form of heat and/or pressure is added to the working fluid forcing it to expand under high pressure so that the fluid performs mechanical work. In this manner, the thermal energy contained in the pressurized fluid is converted to kinetic energy. The fluid then loses pressure, and after unused energy in the form of heat is rejected, the fluid is reheated or recompressed to restore it to high pressure.
Unfortunately, existing heat engines do not convert all the input energy to useful mechanical energy in the same cycle as generally some amount often in the form of heat is not available or utilized for the immediate performance of mechanical work. The fraction of thermal energy that is converted to net mechanical work is called the thermal efficiency of the heat engine. The maximum possible efficiency of a heat engine is that of a hypothetical or ideal cycle, called the Camot Cycle (based on absolute zero as the starting point). Existing heat engines generally operate on much less efficient cycles, such as the Otto, Diesel, Brayton, or Stirling Cycles, with the highest thermal efficiency achieved when the input temperature is as high as possible and the sink temperature is as low as possible. The “waste” or rejected heat is sometimes used for other purposes, including heating a different working fluid, which operates a different heat-engine cycle or simply for space heating but most often the rejected heat is released to the environment. Another common efficiency problem is that when compressors are used to compress incoming air or working fluid and are driven by a shaft driven by the device creating the mechanical power, e.g., a turbine using the Brayton cycle, and the compressor consumes a large portion of the created shaft power, e.g., up to two-thirds of the power.
Hence, there remains a need for improved devices and techniques for converting energy in a working fluid with increased efficiencies. Preferably, such devices and techniques are configured to utilize well-known or even off-the-shelf devices, including heat engines or heat engine components, in new arrangements that enable the capture or collection of a larger percentage of heat from a working fluid and that, in some cases, provide energy in a number of forms including electricity, heat, refrigeration or cooling, and the like.
SUMMARY OF THE INVENTION
The present invention addresses the above problems by providing energy conversion systems and corresponding methods that are adapted to make power and cooling (e.g., cryogenic and coolant flow for refrigeration and heat transfer). The energy conversion systems of the invention generally include an artificially maintained cold reservoir or loop that is retained out of equilibrium with the surrounding environment or ambient fluids (e.g., air, water, and the like). An expander heat engine is included in the system to produce mechanical power from the expansion of a working fluid, such as a binary gas. The expander is thermally and pressure isolated and receives the relatively high-pressure working fluid that has been heated by a heat exchanger to a temperature higher than the thermally isolated expander. Some of the power generated by the expander is, at least in some embodiments, used to perform forced rarefaction of the working fluid and to power a cooling cycle in which condensated working fluid or condensate from the expander and/or rarefaction is pumped to a cold reservoir to export additional heat obtained by the working fluid in the thermally isolated heat exchanger or heat transfer zone. The amount of energy or heat diverted from power production for the purpose of lowering or creating the cold reservoir is preferably at least equal to the friction of the expander section of the heat engine as this energy allows the system to continue operation without reaching equilibrium by eventually running down.
Generally, the engine is selected to be a relatively large volume engine relative to the engines size and/or crank shaft. Typically, the system can be fabricated from common industrial materials and components such as those used for internal combustion engines and bearings. One embodiment of the system uses off-the-shelf components including pumps, engines, and compressors that are built to tolerances and with materials selected to operate within the pressure and temperature ranges of the system, i.e., very cold temperature ranges compared with internal combustion engines. For example, a swash plate piston motor used in hydraulics and air conditioning can be used as an expander, which provides a high ratio of working area to power train linkage and weight. The components are tuned for their designed operating temperatures including calculating any changes for differential shrinkage of rings or bearings, and a lubricant used for cryogenic pumps can be utilized for the expander and related components with beryllium copper and materials chosen for cryogenic systems used in the system of the invention (such as for springs for seals or valves).
After expansion and cooling, a compressor is provided in the system to recompress the now less energetic working gas. The compressor is typically positioned within the same pressure vessel as the expander with a heated or working portion of the compressor exposed to the cold or low temperature side of the heat exchanger to provide the heat of compression to the working fluid rather than rejecting it to the environment. The compressor injects or discharges the compressed working gas to the cold side of the heat exchanger where the gas absorbs heat from an input hot or energy-source fluid such as ambient air, compressed gas (heated or unheated by combustion processes or other heat sources), water or other fluids (e.g.
Hogan & Hartson LLP
Lembke Kent A.
Nguyen Hoang
LandOfFree
Energy conversion method and system with enhanced heat engine does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Energy conversion method and system with enhanced heat engine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Energy conversion method and system with enhanced heat engine will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3120487