Energy control method for an inkjet print cartridge

Incremental printing of symbolic information – Ink jet – Controller

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06315381

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to thermal inkjet printers, and more particularly to the control of droplet firing energy to provide a uniform output.
BACKGROUND OF THE INVENTION
Thermal inkjet hardcopy devices such as printers, graphics plotters, facsimile machines and copiers have gained wide acceptance. These hardcopy devices are described by W. J. Lloyd and H. T. Taub in “Ink Jet Devices,” Chapter 13 of
Output Hardcopy Devices
(Ed. R. C. Durbeck and S. Sherr, San Diego: Academic Press, 1988). The basics of this technology are further disclosed in various articles in several editions of the
Hewlett
-
Packard Journal
[Vol. 36, No. 5 (May 1985), Vol. 39, No. 4 (August 1988), Vol. 39, No. 5 (October 1988), Vol. 43, No. 4 (August 1992), Vol. 43, No. 6 (December 1992) and Vol. 45, No. 1 (February 1994)], incorporated herein by reference. Inkjet hardcopy devices produce high quality print, are compact and portable, and print quickly and quietly because only ink strikes the paper.
An inkjet printer forms a printed image by printing a pattern of individual dots at particular locations of an array defined for the printing medium. The locations are conveniently visualized as being small dots in a rectilinear array. The locations are sometimes “dot locations”, “dot positions”, or pixels”. Thus, the printing operation can be viewed as the filling of a pattern of dot locations with dots of ink.
Inkjet hardcopy devices print dots by ejecting very small drops of ink onto the print medium and typically include a movable carriage that supports one or more printheads each having ink ejecting nozzles. The carriage traverses over the surface of the print medium, and the nozzles are controlled to eject drops of ink at appropriate times pursuant to command of a microcomputer or other controller, wherein the timing of the application of the ink drops is intended to correspond to the pattern of pixels of the image being printed.
The typical inkjet printhead (i.e., the silicon substrate, structures built on the substrate, and connections to the substrate) uses liquid ink (i.e., dissolved colorants or pigments dispersed in a solvent). It has an array of precisely formed orifices or nozzles attached to a printhead substrate that incorporates an array of ink ejection chambers which receive liquid ink from the ink reservoir. Each chamber is located opposite the nozzle so ink can collect between it and the nozzle and has a firing resistor located in the chamber. The ejection of ink droplets is typically under the control of a microprocessor, the signals of which are conveyed by electrical traces to the resistor elements. When electric printing pulses heat the inkjet firing chamber resistor, a small portion of the ink next to it vaporizes and ejects a drop of ink from the printhead. Properly arranged nozzles form a dot matrix pattern. Properly sequencing the operation of each nozzle causes characters or images to be printed upon the paper as the printhead moves past the paper.
In an inkjet printhead the ink is fed from an ink reservoir integral to the printhead or an “off-axis” ink reservoir which feeds ink to the printhead via tubes connecting the printhead and reservoir. Ink is then fed to the various vaporization chambers either through an elongated hole formed in the center of the bottom of the substrate, “center feed”, or around the outer edges of the substrate, “edge feed.”
The ink cartridge containing the nozzles is moved repeatedly across the width of the medium to be printed upon. At each of a designated number of increments of this movement across the medium, each of the resistors is caused either to eject ink or to refrain from ejecting ink according to the program output of the controlling microprocessor. Each completed movement across the medium can print a swath approximately as wide as the number of nozzles arranged in a column of the ink cartridge multiplied times the distance between nozzle centers. After each such completed movement or swath the medium is moved forward the width of the swath, and the ink cartridge begins the next swath. By proper selection and timing of the signals, the desired print is obtained on the medium.
The energy applied to a firing resistor affects performance, durability and efficiency. It is well known that the firing energy must be above a certain firing threshold to cause a vapor bubble to nucleate. Above this firing threshold is a transitional range where increasing the firing energy increases the volume of ink expelled. Above this transitional range, there is a higher optimal range where drop volumes do not increase with increasing firing energy. In this optimal range above the optimal firing threshold drop volumes are stable even with moderate firing energy variations. Since, variations in drop volume cause disuniformities in printed output, it is in this optimal range that printing ideally takes place. As energy levels increase in this optimal range, uniformity is not compromised, but energy is wasted and the printhead is prematurely aged due to excessive heating and ink residue build-up.
In existing printheads having a dedicated connection for each firing resistor, a one time calibration of each connection by either the printer or production circuitry external to the print cartridge also compensates for any parasitic resistance or impedance in the unique path leading to each resistor. Printheads may be characterized at production to set these operating parameters. The printer then uses these operating parameters.
However, in new highly multiplexed printheads having different sets of resistors, there may be variations due to other factors. Each set of resistors is powered by a single voltage line that receives power via an electrical contact pad between the printer electronics and the removable print cartridge. This line continues on a flex circuit to a tab bonding connection to the printhead die having the firing resistors and other electronics. The impedance of the print cartridge contacts, tab bonding connections and connections in between, and resistors can vary from print cartridge to print cartridge. Also, impedance of the print cartridge can vary over time, even when the voltage provided by the printer to each of the cartridge contacts is well controlled. Consequently, as the data printed changes, the current draw through the line and the voltage as measured at the print cartridge terminals may be undesirably varied. For instance, when many or all resistors are fired simultaneously, the print cartridge voltage may be depressed by parasitic effects, giving a lower firing energy than when only one or a few resistors are fired.
Accordingly, there is a need for a method of operating a thermal inkjet printer with a removable printhead having a plurality of ink firing resistors that overcomes the limitations of existing methods discussed above.
SUMMARY OF THE INVENTION
The present invention provides a method of calibrating a removable print cartridge during manufacture and a method of operating an inkjet printer with a removable printhead. The method includes calibrating the print cartridge during manufacture and calibrating the printer during operation of the printer. The method includes the steps of selecting the desired pulse width, minimum over-energy and maximum over-energy; measuring the turn-on voltage for the selected pulse width; calculating the operating voltage from the minimum over-energy; calculating the maximum voltage from the maximum over-energy; setting the operating voltage equal to the maximum voltage; varying the operating voltage to find the maximum operating voltage; setting the operating voltage equal to the maximum operating voltage found; and writing the operating voltage to the memory device. The method of operating an inkjet printer in order to determine the operating settings to apply to a print cartridge installed in the printer, includes the steps of reading calibration information from a memory chip on the print cartridge; setting the printer to use the calibration information; performing test

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Energy control method for an inkjet print cartridge does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Energy control method for an inkjet print cartridge, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Energy control method for an inkjet print cartridge will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2617853

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.