Optical waveguides – Optical transmission cable
Reexamination Certificate
2000-02-02
2001-11-13
Schuberg, Darren (Department: 2872)
Optical waveguides
Optical transmission cable
C385S012000, C324S555000, C340S605000
Reexamination Certificate
active
06317540
ABSTRACT:
FIELD OF INVENTION
The present invention relates generally to detecting chemical analytes which are in contact with a cable for conveying energy and, more specifically, a cable for conveying optical and/or electrical energy having an electrochemical chemical analyte sensor including a conductive polymer composite the electrical properties of which reversibly change upon exposure to chemical analytes.
BACKGROUND OF THE INVENTION
Cables for conveying energy, such as optical fiber cables which convey optical signals, electrical power cables which convey electrical power or hybrid cables which convey optical signals and electrical power, are often buried underground or disposed in ducts which are buried underground. The owners or operators of such buried energy cables are concerned about exposure of the cables to chemicals in the ground, which can be the result of accidental spills or natural occurrences, because the chemicals, either in liquid or vapor phase, can damage and eventually penetrate through the protective outer jacketing of the energy cables. The cable outer jacketing, when undamaged, ordinarily encircles or surrounds the energy conveying media in an energy cable.
When the protection that the outer jacket provides to a cable is compromised, materials such as water and harmful chemicals can come in contact with and damage, for example, the optical fiber within a optical fiber cable or the electrical insulation within an electrical power cable, which can cause a disruption or complete loss of optical signal transmission capability, i.e., data communications service, in an optical fiber cable or of electrical power conveyance capability in an electrical power cable. Although an analyte which has caused damage to the cable jacketing may not come in contact with the energy conveying media to cause damage thereto, the damage that an analyte can cause to the cable jacketing can expose the energy conveying media and make the media susceptible to damage from other environmental elements, such as water, dirt, ice, rodents, etc., because the outer jacket would no longer protect against such elements.
Further, hydrocarbon-based chemicals, which are chemicals commonly involved in a spill of chemicals onto the ground, can cause damage to an energy cable which degrades or disrupts the service that the cable is providing, and can be a combustion hazard if they enter an underground duct in which the cables are installed.
Various sensors exist for detecting chemical analytes. For example, chemical analyte sensors including conductive components whose conductivity changes when exposed to a chemical analyte are known in the art. See, for example, U.S. Pat. Nos. 5,417,100, 5,698,089 and 5,672,297, incorporated by reference herein. Also known are electrochemical chemical analyte sensors which are for use with pipe lines or containers which transport or store organic solvents and which include conductive polymer composite materials having conductive particles added thereto at concentrations above the electrical percolation concentration threshold. See U.S. Pat. No. 5,574,377, incorporated by reference herein.
Elongate sensors comprising conductive polymers are also described in U.S. Pat. No. 5,015,958. However, the structures described are complicated and are difficult and complicated to manufacture.
Currently, the presence of a harmful analyte in the ground, which is in contact with a buried energy cable and can damage the jacketing and the energy conveying media of the cable to cause a disruption of the service(s) provided by the cable, is not detected until a disruption or loss of the service(s) that the cable is providing occurs and is noticed by a user of such service(s). Although the longitudinal location along the length of the cable where the cable has been damaged by an analyte can be determined using known techniques, such as time domain reflectometry which would be performed on the energy conveying means of the cable, for example, an optical fiber, after a service disruption has been observed, the cable usually has been so severely damaged by the time a service disruption is noticed that extensive and costly repair, possibly including replacement, of the damaged portion of the cable would be required.
In the prior art, there is no practical and inexpensive technique for detecting whether a cable is exposed to an analyte, determining the location along the longitudinal length of the cable where there is exposure to the analyte, determining the extent that an analyte has penetrated radially inwardly into the cable and determining the damage that an analyte has caused to a cable.
What is needed, and apparently lacking in the art, is an electrochemical chemical analyte sensor which can be inexpensively provided in an energy cable and be utilized to detect whether a cable is exposed to a chemical analyte, to determine the location along the longitudinal length of the cable where the cable is exposed to an analyte, to determine the extent that an analyte has penetrated into the cable, to determine the amount of damage that a chemical analyte has caused to the cable and to identify or determine the type of an analyte to which the cable is exposed.
SUMMARY OF THE INVENTION
In accordance with the present invention, a cable for conveying optical and/or electrical energy includes a longitudinally extending core which contains at least one energy conveying means, such as an optical fiber or electrical conductor, a longitudinally extending outer covering or jacket which surrounds the core and at least one longitudinally extending electrochemical chemical analyte sensor outside the core and not energy coupled to the at least one energy conveying means. In a preferred embodiment, the electrochemical sensor of the cable is a part of the jacket and optionally is energy coupled to the at least one energy conveying means. The electrochemical sensor includes a conductive polymer composite (“CPC”) providing a conductive network or path along its longitudinal length and having an affinity for at least one chemical analyte and electrical properties which undergo a reversible change when the CPC is exposed to the at least one chemical analyte. Preferably, the electrical conductivity of the CPC undergoes a predetermined reversible degradation where it is exposed to the at least one chemical analyte to indicate (i) whether the analyte is in contact with the cable; (ii) the location along the longitudinal length of the cable where the analyte is in contact with the cable; (iii) the penetration of the analyte radially inward into and toward the longitudinal axis of the cable; (iv) the damage caused to the cable by the analyte; and (v) the identity of the analyte.
In a preferred embodiment, the electrochemical sensor is in the form of at least one longitudinally extending, continuous stripe disposed at least partially within the outer jacket of the cable. Preferably, the outer surface of at least one stripe is disposed substantially at or tangent to a nominal outer periphery or outer surface of the cable jacket to provide that an analyte in contact with the cable jacket can be detected. The stripe can lie in a plane intersecting the cable axis or can be helically wound around the axis.
In a further preferred embodiment, the electrochemical sensor is in the form of at least one longitudinally extending stripe disposed substantially between a nominal inner periphery or inner surface of the cable jacket and the nominal outer periphery of the jacket, but spaced from the nominal outer periphery of the jacket, to provide that the extent of penetration of an analyte radially inwardly, with respect to the longitudinal axis of the cable, of the cable jacket can be determined. In still a further preferred embodiment, the cable includes a first plurality of longitudinally extending stripes of a CPC disposed at or tangent to the nominal outer periphery of the outer jacket, and a second plurality of longitudinally extending stripes of a CPC disposed within the jacket and at or tangent to the nominal inner periphery of t
Curley James R.
Foulger Stephen H.
Boutsikaris Leo
Norris McLaughlin & Marcus P.A.
Pirelli Cables & Systems, LLC
Schuberg Darren
LandOfFree
Energy cable with electrochemical chemical analyte sensor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Energy cable with electrochemical chemical analyte sensor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Energy cable with electrochemical chemical analyte sensor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2574540