Energy absorbing disc travel limiter with multiple adjacent...

Dynamic magnetic information storage or retrieval – Record transport with head stationary during transducing – Disk record

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06424487

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to the field of disc drive data storage devices, or disc drives, and more particularly, but not by way of limitation, to an energy absorbing disc travel limiter which prevents damage as a result of applied mechanical shocks.
BACKGROUND OF THE INVENTION
Disc drives of the type known as “Winchester” disc drives or hard disc drives are well known in the industry. Such disc drives record digital data on a plurality of circular, concentric data tracks on the surfaces of one or more rigid discs. The discs are typically mounted for rotation on the hub of a brushless DC spindle motor. In disc drives of the current generation, the spindle motor rotates the discs at speeds of up to 10,000 RPM.
Data are recorded to and retrieved from the discs by an array of vertically aligned read/write head assemblies, or heads, which are controllably moved from track to track by an actuator assembly. The read/write head assemblies typically consist of an electromagnetic transducer carried on an air bearing slider. This slider acts in a cooperative hydrodynamic relationship with a thin layer of air dragged along by the spinning discs to fly the head assembly in a closely spaced relationship to the disc surface. In order to maintain the proper flying relationship between the head assemblies and the discs, the head assemblies are attached to and supported by head suspensions or flexures.
The actuator assembly used to move the heads from track to track has assumed many forms historically, with most disc drives of the current generation incorporating an actuator of the type referred to as a rotary voice coil actuator. A typical rotary voice coil actuator consists of a pivot shaft fixedly attached to the disc drive housing base member closely adjacent the outer diameter of the discs. The pivot shaft is mounted such that its central axis is normal to the plane of rotation of the discs. An actuator housing is mounted to the pivot shaft by an arrangement of precision ball bearing assemblies, and supports a flat coil which is suspended in the magnetic field of an array of permanent magnets, which are fixedly mounted to the disc drive housing base member. On the side of the actuator housing opposite to the coil, the actuator housing also typically includes a plurality of vertically aligned, radially extending actuator head mounting arms, to which the head suspensions mentioned above are mounted. When controlled DC current is applied to the coil, a magnetic field is formed surrounding the coil which interacts with the magnetic field of the permanent magnets to rotate the actuator housing, with the attached head suspensions and head assemblies, in accordance with the well-known Lorentz relationship. As the actuator housing rotates, the heads are moved radially across the data tracks along an arcuate path.
Disc drives of the current generation are included in desk-top computer systems for office and home environments, as well as in laptop computers which, because of their portability, can be used wherever they can be transported. Because of this wide range of operating environments, the computer systems, as well as the disc drives incorporated in them, must be capable of reliable operation over a wide range of ambient temperatures.
Furthermore, laptop computers in particular can be expected to be subjected to large amounts of mechanical shock as they are moved about. It is common in the industry, therefore, that disc drives be specified to operate over ambient temperature ranges of from, for instance, −5° C. to 60° C., and further be specified to be capable of withstanding operating mechanical shocks of 100 G or greater without becoming inoperable.
Furthermore, the amount of non-operating mechanical shock which the disc drive is specified to withstand is constantly being increased, with future disc drive products being considered which must be capable of operating after experiencing non-operating mechanical shocks in the range of 1000 G.
One shock test which the disc drive is expected to endure involves resting the disc drive on a hard surface, such as a table top, and then raising one end of the disc drive to a specified height and dropping the disc drive back onto the surface. In the course of conducting such tests, it was found that one failure mode was the result of the discs bending in the axial direction, often referred to as “coning”, and coming into contact with the actuator head mounting arms. Such contact resulted in damage to the discs, the head arms or both, and the generation of particles within the sealed disc drive housing which were free to migrate and potentially interfere with the desired interface between the heads and discs.
The present invention is directed to prevention of this type of mechanical-shock-induced damage.
SUMMARY OF THE INVENTION
The present invention is an energy absorbing disc travel limiter which not only mechanically defines a limit to the extent to which a disc in a disc drive can be axially displaced in response to applied mechanical shocks, but which also acts to damp the shock-induced motion of the discs, thus preventing contact between the discs and the actuator head mounting arms. The amount of damping provided by the disc travel limiter is determined by selection of the material of the disc travel limiter and selection of certain dimensions of the disc travel limiter.
It is an object of the invention to provide a mechanism for limiting the extent to which the outer diameter of the discs of a disc drive can move axially in response to applied mechanical shock.
It is another object of the invention to provide a mechanism which damps the movement of the outer diameter of the discs of a disc drive in response to applied mechanical shock.
It is another object of the invention to provide a mechanism for the above stated purposes which is simple and economical to implement in a high-volume manufacturing environment.
The manner in which the present invention achieves the objects stated, along with other features, advantages and benefits of the invention, can best be understood by a review of the following Detailed Description of the Invention, when read in conjunction with a review of the accompanying drawings.


REFERENCES:
patent: 4843503 (1989-06-01), Hazebrouck et al.
patent: 5121278 (1992-06-01), Tanaka et al.
patent: 5140478 (1992-08-01), Yoshida
patent: 5341260 (1994-08-01), Jabbari
patent: 5422770 (1995-06-01), Alt
patent: 5757587 (1998-05-01), Berg et al.
patent: 5801899 (1998-09-01), Genheimer
patent: 6226145 (2001-05-01), Genheimer et al.
patent: 404188476 (1992-07-01), None
patent: 408106743 (1996-04-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Energy absorbing disc travel limiter with multiple adjacent... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Energy absorbing disc travel limiter with multiple adjacent..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Energy absorbing disc travel limiter with multiple adjacent... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2823252

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.