Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Arterial prosthesis – Stent combined with surgical delivery system
Reexamination Certificate
1999-04-05
2002-02-05
Willse, David H. (Department: 3738)
Prosthesis (i.e., artificial body members), parts thereof, or ai
Arterial prosthesis
Stent combined with surgical delivery system
C606S198000
Reexamination Certificate
active
06344053
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to medical devices and particularly relates to implantable devices for treating narrowing of coronary or peripheral vessels in humans.
BACKGROUND OF THE INVENTION
Cardiovascular disease, including atherosclerosis, is the leading cause of death in the U.S. The medical community has developed a number of methods for treating coronary heart disease, some of which are specifically designed to treat the complications resulting from atherosclerosis and other forms of coronary arterial narrowing.
The most impelling development in the past decade for treating atherosclerosis and other forms of coronary narrowing is percutaneous transluminal coronary angioplasty, hereinafter referred to simply as “angioplasty” or “PTCA”. The objective in angioplasty is to enlarge the lumen of the affected coronary artery by radial hydraulic expansion. The procedure is accomplished by inflating a balloon within the narrowed lumen of the coronary artery. Radial expansion of the coronary artery occurs in several different dimensions and is related to the nature of the plaque. Soft, fatty plaque deposits are flattened by the balloon and hardened deposits are cracked and split to enlarge the lumen. The wall of the artery itself is also stretched when the balloon is inflated.
PTCA is performed as follows: A thin-walled, hollow guiding catheter is typically introduced into the body via a relatively large vessel, such as the femoral artery in the groin area or the brachial artery in the arm. Access to the femoral artery is achieved by introducing a large bore needle directly into the femoral artery, a procedure known as the Seldinger Technique. Once access to the femoral artery is achieved, a short hollow sheath is inserted to maintain a passageway during PTCA. The flexible guiding catheter, which is typically polymer coated, and lined with Teflon, is inserted through the sheath into the femoral artery. The guiding catheter is advanced through the femoral artery into the iliac artery and into the ascending aorta. Further advancement of the flexible catheter involves the negotiation of an approximately 180 degree turn through the aortic arch to allow the guiding catheter to descend into the aortic cusp where entry may be gained to either the left or the right coronary artery, as desired.
After the guiding catheter is advanced to the ostium of the coronary artery to be treated by PTCA, a flexible guidewire is inserted into the guiding catheter through a balloon and advanced to the area to be treated. The guidewire provides the necessary steerability for lesion passage. The guidewire is advanced across the lesion, or “Wires” the lesion, in preparation for the advancement of a polyethylene, polyvinyl chloride, polyolefin, or other suitable substance balloon catheter across the guide wire. The balloon, or dilatation, catheter is placed into position by sliding it along the guide wire. The use of the relatively rigid guide wire is necessary to advance the catheter through the narrowed lumen of the artery and to direct the balloon, which is typically quite flexible, across the lesion. Radiopaque markers in the balloon segment of the catheter facilitate positioning across the lesion. The balloon catheter is then inflated with contrast material to permit fluoroscopic viewing
during treatment. The balloon is alternately inflated and deflated until the lumen or the artery is satisfactorily enlarged.
Unfortunately, while the affected artery can be enlarged, in some instances the vessel restenoses chronically, or closes down acutely, negating the positive effects of the angioplasty procedure. In the past, such restenosis has frequently necessitated repeat PTCA or open heart surgery. While such restenosis does not occur in the majority of cases, it occurs frequently enough that such complications comprise a significant percentage of the overall failures of the PTCA procedure, for example, twenty-five to thirty-five percent of such failures.
To lessen the risk of restenosis, various devices have been proposed for mechanically keeping the affected vessel open after completion of the angioplasty procedure. Such mechanical endoprosthetic devices, which are generally referred to as stents, are typically inserted into the vessel, positioned across the lesion, and then expanded to keep the passageway clear. Effectively, the stent overcomes the natural tendency of the vessel walls of some patients to close back down, thereby maintaining a more normal flow of blood through that vessel than would be possible if the stent were not in place.
Various types of stents have been proposed, although to date none has proven satisfactory. One proposed stent involves a tube of stainless wire braid. During insertion. the tube is positioned along a delivery device, such as a catheter, in extended form, making the tube diameter as small as possible. When the stent is positioned across the lesion, it is expanded, causing the length of the tube to contract and the diameter to expand. Depending on the materials used in construction of the stent, the tube maintains the new shape either through mechanical force or otherwise. For example, one such stent is a self-expanding stainless steel wire braid. Other forms of stents include various types tubular metallic cylinders expanded by balloon dilatation. One such device is referred to as the Palmaz stent, discussed further below.
Another form of stent is a heat expandable device. This device, originally designed using NITINOL by Dotter has recently been modified to a new tin-coated, heat expandable coil by Regan. The stent is delivered to the affected area on a catheter capable of receiving heated fluids. Once properly positioned, heated saline is passed through the portion of the catheter on which the stent is located, causing the stent to expand. Numerous difficulties have been encountered with this device, including difficulty in obtaining reliable expansion, and difficulties in maintaining the stent in its expanded state.
Perhaps the most popular stent presently under investigation in the United States is referred to as the Palmaz stent. The Palmaz stent involves what may be thought of as a stainless steel cylinder having a number of slits in its circumference, resulting in a mesh when expanded. The stainless steel cylinder is delivered to the affected area by means of a balloon catheter, and is then expanded to the proper size by inflating the balloon.
Significant difficulties have been encountered with all prior art stents. Each has its percentage of thrombosis, restenosis and tissue in-growth, as well as varying degrees of difficulty in deployment. Another difficulty with at least come of prior art stents is that they do not readily conform to the vessel shape. In addition, the relatively long length of such prior art stents has made it difficult to treat cursed vessels, and has also effectively prevented successful implantation of multiple such stents. Anticoagulants have historically been required at least for the first three months after placement. These and other complications have resulted in a low level of acceptance for such stents within the medical community, and to date stents have not been accepted as a practical method for treating chronic restenosis.
Thus there has been a long felt need for a stent which is effective to maintain a vessel open, without resulting in significant thrombosis, which may be easily delivered to the affected area, easily expanded to the desired size, easily conformed to the affected vessel, and easily used in multiples to treat curved vessels and varying lengths of lesions.
SUMMARY OF THE INVENTION
The present invention substantially reduces the complications and overcomes the limitations of the prior art devices. The endovascular support device of the present invention comprises a device having very low mass which is capable of being delivered to the affected area by means of a slightly modified conventional balloon catheter similar to that used in a standard balloon angioplasty procedure
The suppo
Jackson Suzette J.
Medtronic AVE Inc.
Sterne Kessler Goldstein & Fox P.L.L.C.
Willse David H.
LandOfFree
Endovascular support device and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Endovascular support device and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Endovascular support device and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2968959