Endovascular prosthetic device, an endovascular graft...

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Arterial prosthesis – Stent combined with surgical delivery system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C623S001350, C606S108000, C606S198000

Reexamination Certificate

active

06325819

ABSTRACT:

TECHNICAL FIELD
This invention relates generally to medical devices and, more particularly, to an endovascular prosthetic device including at least one expandable tubular frame body provided with at least one covering of bio-compatible material. The frame body is contractible into a first shape with a small diameter for introduction to a vascular site and is radially expandable into a second shape having a larger diameter and an inner lumen.
The present invention also relates to an endovascular graft prosthesis for arrangement at an aneurysm positioned in the vicinity of a bifurcation in an arterial system having a main lumen and a first and a second branch lumen. The graft prosthesis includes an endovascular prosthetic device with at least one expandable tubular frame body for arrangement in the main lumen and a first and a second graft limb. The frame body is contractible for introduction to a vascular site upstream of the aneurysm.
BACKGROUND OF THE INVENTION
An aortic aneurysm effects nearly 200,000 Americans annually and presents a significant risk of mortality to a patient. Death often occurs when the aneurysm ruptures. Open, invasive, elective surgery to repair an aortic aneurysm also presents a significant risk of mortality and has been reported to be in the two to three percent. As a result, minimally invasive surgical repair of aortic aneurysms are highly desirable and are preferred. An endovascular graft prosthesis of this kind and provided with a prosthetic device of the above kind is known from EP 0539237. This graft prosthesis has a main body connected to two graft limbs. During introduction all three elements of the prosthesis have to be placed inside a catheter with the consequence that the catheter must have a large diameter, which makes true percutaneous insertion into the femoral arteries impossible. It is also a disadvantage that the frame body of the prosthetic device is covered by the cranial end of the graft main body on its periphery, because the graft main body restricts the maximum radial expansion of the frame body and thus limits the radial pressure of the frame body on the aorta.
W095/16406 discloses another endovascular graft prosthesis for abdominal aorta aneurysm repair comprising a bag-shaped graft main body and two graft limbs which are separately femorally introduced and inserted through outlet openings in the bottom of the bag-shaped main body and mounted inside the bag. The frame body of the prosthetic device is also in this case on its periphery covered by the cranial end of the graft main body, and in the radially compressed shape of the frame body the surrounding graft material is positioned outside the frame body adding to the diameter of the compressed device, and thus requiring a larger sized introducer catheter. Furthermore, when the limbs are to be positioned it may be difficult to catch the outlet openings in the loosely downhanging lower portion of the bag.
U.S. Pat. No. 5,316,023 suggests a method for repairing an abdominal aorta aneurysm by femorally advancing one tube through each iliac artery and positioning the cranial ends of the tubes in the aorta upstream of the aneurysm, whereupon inflatable balloons are used to expand said cranial ends into contact with each other and the aorta. The expanded tube ends are at risk of creating an incomplete blockage of the blood flow to the aneurysm, in particular in two wedge-shaped areas positioned at opposite sides of the central area of contact between the two tubes.
An abdominal aorta aneurysm requiring repair is a serious and often deadly condition found in patients who are often already weakened by other conditions. The existing minimally invasive techniques for aorta aneurysm repair are only capable of treating from 20 to 30 percent of the total discovered conditions requiring repair, and the failure rate is too high when repair is sought with aid from existing techniques. One particular problem with prior art endovascular graft prosthesis is the risks of leaks of blood past the cranial graft end into the aneurysm. Such leaks may be caused by incomplete occlusion of the aorta lumen when the graft prosthesis is initially mounted in the aorta or may be caused by lacking ability of the graft prosthesis to continuously block for blood leaks past the full periphery of the cranial graft end during a time span of hours or days following the mounting of the graft prosthesis.
SUMMARY OF THE INVENTION
It is an advantage of the invention to provide an endovascular prosthetic device having a frame body with a high ability to remain in contact with a vascular wall, even if the wall changes shape in a local area when the patient moves.
It is a further advantage of the invention to provide a prosthetic device capable of effecting a well defined partial occlusion of a body vessel.
It is yet another advantage of the invention to provide a prosthetic device which can be contracted into a shape with such small outer dimensions that the device can be loaded into a sheath or a catheter having an inner lumen of 14 French or less.
The invention also aims at providing an endovascular graft prosthesis allowing transluminally repair of aneurysms in bifurcated lumens.
It is a further advantage of the invention to device an endovascular graft prosthesis providing low risks of blood leakage.
It is yet another object of the invention to design an endovascular graft prosthesis which is comparatively easy to introduce and mount in the vascular system.
Further objects of the invention appears from the detailed description of preferred embodiments.
In order to achieve these advantages and also further advantages, the prosthetic device is made so that the biocompatible material covering extends freely and orthogonally across the cross-sectional diameter of the inner lumen of the tubular frame body at both ends thereof and has multiple apertures. Each of the apertures has a diameter of less than half the larger diameter of the frame body, and that the covering is spread out to a substantially plane shape by the expansion of the tubular frame.
By the installation of the frame body at the desired vascular site the covering extending across the cross-sectional diameter of the inner lumen of the frame body at each end is brought to extend across the cross-sectional diameter and thereby occlude the inner lumen of the vessel in the area surrounding the apertures. The amount of covering required to occlude the lumen in a direction transverse to the longitudinal direction of the vessel is substantially smaller than the amount of covering needed to cover the periphery of the frame body. The small amount of covering used in the present device facilitates loading of the device into a small diameter catheter. Another substantial advantage is that the covering only restricts radial expansion of the frame body at the circumferential line described by the outer rim of the covering, whereas the radial expansion of the remaining portion or portions of the frame body is unrestricted by the covering. In these unrestricted portions, the frame body is free to follow shape changes in the vascular wall. The mounting of the covering inside the frame body provides the additional advantage that the covering is prevented from getting locked between the exterior of the frame body and the vascular wall during expansion of the frame body to the second shape. In the prior art devices where the covering is provided on the exterior of the frame body, a folded portion of the covering may become stuck between the frame body and the vascular wall so that full expansion of the frame body is prevented. This risk is not relevant to the present device.
The covering may be mounted at any position on the frame body, e. g., at the middle of the frame body length. This may be an advantage if the vessel occlusion is to be effected at a vascular site where the vessel has a pronounced hourglass-shape. However, the covering is preferably mounted at one or both ends of the tubular body. In some instances it is desirable to use the device with only one occluding co

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Endovascular prosthetic device, an endovascular graft... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Endovascular prosthetic device, an endovascular graft..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Endovascular prosthetic device, an endovascular graft... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2592902

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.