Endovascular cryotreatment catheter

Surgery – Instruments – Cyrogenic application

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S023000, C606S024000

Reexamination Certificate

active

06283959

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
Not Applicable.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
Not Applicable.
BACKGROUND OF THE INVENTION
The present invention relates to endovascular cryocatheters, such as angioplasty balloons having a freezing function for treating tissue by extreme cooling contact. These catheters have an elongated body through which a cooling fluid circulates to a tip portion which is adapted to contact and cool tissue. Such a device may include a steering assembly such as an inextensible pull wire and a flexible tip to which the pull wire attaches which may be bent into a curved configuration to aid its navigation through blood vessels to a desired treatment site. When used for angioplasty or the destruction of tissue on the inner wall of a vessel, the catheter generally also has one or more inflatable balloon portions which may serve two functions of displacing blood from the treatment site to allow more effective cooling, and physically distending the affected vessel to break up accumulations of plaque.
Endovascular catheters must be of relatively small diameter, and configured for insertion along relatively confined pathways to reach an intended ablation site. As such, the cooling fluid must circulate through a relatively long and thin body yet apply significant cooling power in their distal tip. The requirement that coolant be localized in its activity poses constraints on a working device. For example, when the catheter must chill tissue to below freezing, the coolant itself must obtain a lower temperature to offset the conductive warming effects of adjacent regions of body tissue. Furthermore, the rate of cooling is limited by the ability to circulate a sufficient mass flow of coolant through the active contact region. Since it is a matter of some concern that proximal, adjacent or unintended tissue sites should not be exposed to harmful cryogenic conditions the flowing coolant must be exposed in a limited region. One approach to cooling uses a phase change refrigerant which is provided through the body of the catheter at relatively normal or ambient temperature and attains cooling only upon expansion within the tip region. One such device treats or achieves a relatively high rate of heat transfer by using a phase change coolant which is pumped as a high pressure liquid to the tip of the catheter and undergoes its phase change expanding to a gas in a small chamber located at the tip. The wall of the chamber contacts the adjacent tissue directly to effect conductive cooling or ablation treatment. Other cryocatheters may employ gas at high pressure, and achieve cooling via the Joule-Thomson effect at a spray nozzle in a cooling chamber at the distal end of the catheter.
In an endovascular catheter as described above, a relatively high cooling power may be obtained. However, the expansion of a phase change or high pressure coolant exiting from a nozzle within a small catheter tip creates highly turbulent flow conditions. The cooling region of the tip may be implemented as a fairly rigid chamber having highly thermally conductive wall or section of its wall formed for example by a metal shell. However, if one were to replace such a tip with an inflatable balloon as is commonly used for angioplasty, the size of the chamber would vary considerably as the balloon is inflated, causing substantial variations in flow conditions of the fluid entering the tip and substantial changes in heat transport across the expanding balloon wall. Both of these factors would result in variations of the cooling power over the tip. Furthermore, coolant materials suitable for high pressure or phase change refrigeration may pose risks when used within a blood vessel. Accordingly, there is a need for an improved catheter construction for cryogenic angioplasty.
Another factor which adds complexity to the task of cryocatheter design is that the primary mechanism of treatment involves thermal conduction between the catheter and a targeted region of tissue. Thus, not only is the absolute cooling capacity of the catheter important, but the nature and extent of contact between the cooled region of the catheter and the adjacent tissue is important. Effective contact may require moving, positioning, anchoring and other mechanisms for positioning, stabilizing and changing the conformation of the cooled portion of the catheter. Slight changes in orientation may greatly alter the cooling range or characteristics of the catheter, so that even when the changes are predictable or measurable, it may become necessary to provide positioning mechanisms of high stability or accuracy to assure adequate treatment at the designated sites. Furthermore, it is preferable that a vessel be occluded to prevent warming by blood flow during treatment. Beyond that, one must assure that the cooling activity is effective at the surface of the catheter, and further that defects do not cause toxic release of coolant or dangerous release of pressure into the body.
Secondary environmental factors, such as the circulation of blood near or at the treatment site may also exert a large influence on the rate at which therapeutic cooling accrues in the targeted tissue.
There is therefore a need for improved cryocatheter constructions to occlude blood flow and form a dependable thermal contact with a vessel wall.
SUMMARY OF THE INVENTION
One or more of these and other desirable features are achieved in a catheter having a handle adapted to receive a supply of coolant and a return port for return of spent coolant. The handle is attached to an elongated catheter body adapted for bodily or endovascular insertion with a tip assembly at its distal end. The tip includes an inflation balloon into which the coolant is injected and from which spent coolant is returned to the handle via a return passage extending through the body of the catheter. A valve or controller regulates back pressure in the return passage to coordinate the flow of coolant into and out of the balloon so as to both inflate the balloon and achieve cryogenic cooling at the balloon wall. Preferably the coolant is liquid carbon dioxide, but in various configurations discussed further below, coolants such as saline or high pressure refrigerants may also be used.
In a preferred embodiment, thermal conductivity of the balloon wall is enhanced by inclusion of thermally conductive material, such as metallic material, which may be introduced as components of a composite elastomer material, or as a patterned metallic layer to form a pattern for thermal treatment. The metallic patterns may be formed by printing, lithography or other means, and are preferably formed of copper, silver or highly thermally conductive material so that the through-conduction characteristics of the balloon wall are enhanced in the metal regions. Suitable patterns include spirals, dots, arrays of separated segments, or meandering curves which are composed of continuous, and possibly connected regions that are shaped to allow expansion of the balloon body without localized stress cracking or separation of the balloon wall material. The applied conductive patterns form areas of enhanced thermal conductivity at which icing preferentially occurs to stimulate tissue destruction and vascular regeneration. Thus, patterns are preferably ones such as waffle-iron or arrays of small lesions that are effective to treat the endovascular wall. The back pressure in the return line may be provided by a check valve release, which, moreover, may vent directly to the atmosphere when a coolant such as liquid carbon dioxide is used. The valve is preferably configured to maintain, during inflation, a pressure differential between the injection and the release, or a back pressure in the return line, which may for example be on the order of ten psid or more, sufficient to maintain adequate cooling circulation through the catheter while inflating the balloon.
In accordance with another aspect of the invention, there is provided a cryocatheter having a balloon assembly at its cooling end in which a first ball

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Endovascular cryotreatment catheter does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Endovascular cryotreatment catheter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Endovascular cryotreatment catheter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2445332

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.