Surgery – Instruments – Means for marking animals
Reexamination Certificate
2002-12-05
2004-09-21
Gartenberg, Ehud (Department: 3742)
Surgery
Instruments
Means for marking animals
C128S200260, C600S108000
Reexamination Certificate
active
06793661
ABSTRACT:
TECHNICAL FIELD
This invention relates generally to sheath assemblies having an inflatable member, and to methods and apparatus that inhibit longitudinal expansion of a body portion of the sheath during inflation of the inflatable member.
BACKGROUND OF THE INVENTION
The use of endoscopes for diagnostic and therapeutic purposes is widespread. For example, there are upper endoscopes for examination of the esophagus, stomach and duodenum, colonoscopes for the examination of the colon, angioscopes for vascular examination, bronchoscopes for examining the bronchi, laparoscopes for examining the peritoneal cavity, and arthroscopes for the examination of joint spaces. The following discussion applies to all of these, as well as other types of endoscopes and probes inserted into the body, such as ultrasound probes.
An endoscope for examining the bronchial tract and conducting transbronchial biopsies is a good example of the usefulness of endoscopic technology. These devices, known as flexible bronchoscopes, are widely used in diagnosing pulmonary diseases since they are capable of reaching the more distal bronchi in the bronchial tract. To properly navigate and view a bronchial area, the bronchoscope is generally structured to contain a fiber optic bundle within the elongated probe section. Alternatively, the bronchoscope may utilize other means to view the bronchial area, such as a video device positioned within the bronchoscope. In addition to providing a direct viewing capability, flexible bronchoscopes generally possess a means to remove tissue samples, or other material from the bronchial tract for biopsy or culture purposes. Tissue samples for biopsy purposes may be collected using a biopsy forceps extending from the distal end of the bronchoscope or by brushing the suspect area to capture cellular material for subsequent microscopic examination. Another commonly used technique to collect cellular material is to wash, or lavage, the suspect area. When a lavage procedure is used, a solution is injected into the bronchial passage and subsequently withdrawn by suction through the distal end of the bronchoscope to capture cellular material. Following withdrawal of the lavage fluid, the cellular material may be subjected to a cytological examination or culture.
One difficulty encountered in the use of endoscopes is continuously maintaining the endoscopic probe in a selected location within a body passage during the examination. Movement of the endoscopic probe while it is positioned within a body passage may occur for a number of reasons. For example, movement of the endoscope may occur due to an unintended bodily movement of the operator while the patient is undergoing the examination, or by an involuntary movement of the patient in response to the examination. Once the distal end of the endoscope has been dislodged from its intended location, it must be carefully repositioned before the examination may be resumed. Movement of the endoscope within a body passage is particularly pronounced during bronchoscopic examinations, since the patient must continue to breathe during the examination. Further, involuntary bronchospasmodic events within the bronchial passages may occur during the examination that will disrupt the location of the distal end of the bronchoscope. A significant additional difficulty resulting from unintended patient movement may arise when a biopsy procedure is conducted. Since a biopsy forceps or brush is generally used, an uncontrolled or unintended cutting of tissue in the passage due to patient movement may lead to hemoptysis. Moreover, since the biopsy forceps, or brush may reach and perforate the pleura, pneumothorax may also occur.
Still another difficulty encountered in the use of endoscopes for diagnostic purposes is the inability to sealably isolate a portion of the endoscope from the remainder of the body passage during an endoscopic examination. To facilitate internal viewing of a passage, for example, the fluid occupying the cavity is generally removed by means of a suction channel in the endoscope, which may be followed by the introduction of a gas through an additional channel in the endoscope to distend the internal space. Other endoscopic applications may require that a fluid be retained within the portion of the body passage that has been sealably isolated. For example, in transbronchial diagnostic procedures such as bronchoalveolar lavage, the bronchoscope is used to gently irrigate the air spaces in a distal air passage with a solution. Isolation of the solution to the region surrounding the distal end of the bronchoscope is required so that cellular samples removed during the lavage are sufficiently localized to be of diagnostic value. In particular, when collecting samples by lavage for use in the diagnosis of infectious pulmonary diseases, the sample must not be contaminated by bacterial or other agents transported to the distal end of the probe by the unrestrained movement of the solution through the passage.
Increasingly, endoscopes are used with disposable sheaths that are positioned over the insertion tube of the endoscope to avoid the communication of disease from one patient to another. An additional advantage of the disposable sheath is that it allows the device to be used at more frequent intervals, since the need for lengthy cleaning and disinfection or sterilization procedures is largely eliminated. Generally, the sheath may be comprised of a flexible, thin, resilient elastomeric material, such as latex or other similar materials, or may be a relatively rigid, inelastic material such as PVC, thermoplastic polyesters, polycarbonate or the like. The sheath may fit over and either tightly or loosely surround a portion of the insertion tube of the endoscope so the insertion tube is at least partially isolated from contaminants. The sheath may include a viewing window at the distal end, and may include a plurality of internal channels, or lumens, through which biopsy samples or fluids may be either introduced or removed. Accordingly, an additional difficulty encountered during the use of endoscopes is maintaining the position of the viewing window on the distal end of the sheath in close engagement with the distal end of the insertion tube to avoid reflections which may inhibit the operator's view through the viewing window.
SUMMARY OF THE INVENTION
The invention is directed toward sheath assemblies having an inflatable member, and to methods and apparatus that inhibit longitudinal expansion of a body portion of the sheath during inflation of the inflatable member. In one aspect, a sheath assembly includes a body portion adapted to encapsulate a distal end of an insertion tube, and an inflatable member coupled to the body portion and adapted to be inflated radially outwardly from the body portion. The sheath assembly further includes an expansion-inhibiting mechanism coupled to at least one of the inflatable member and the body portion. The expansion-inhibiting mechanism advantageously inhibits a longitudinal expansion of the body portion during inflation of the inflatable member.
The expansion-inhibiting mechanism may assume a variety of alternate aspects. For example, the expansion-inhibiting mechanism may be a non-compliant member, a non-compliant sleeve member extending between first and second longitudinal positions, and a non-compliant portion of a working channel. In further aspects, the expansion-inhibiting mechanism may be a non-compliant portion of the body portion, a longitudinally-stretched portion of the body portion, and a longitudinally-stretched portion of the body portion including at least one reinforcing spring member. In still other aspects, the expansion-inhibiting mechanism may include a pressure relief device fluidly coupled to the inflatable member, or a detent mechanism disposed between the inflatable member and the enclosed distal end and adapted to engage a second detent mechanism on the insertion tube.
REFERENCES:
patent: 3776222 (1973-12-01), Smiddy
patent: 4066070 (1978-01-01), Utsugi
patent: 4148307 (
Hamilton Bruce
Landman Mark S.
Martone Steve
Mulhern Timothy J.
Dorsey & Whitney LLP
Fastovsky Leonid M
Gartenberg Ehud
Vision - Sciences, Inc.
LandOfFree
Endoscopic sheath assemblies having longitudinal expansion... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Endoscopic sheath assemblies having longitudinal expansion..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Endoscopic sheath assemblies having longitudinal expansion... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3185248