Endoscope optics

Optical waveguides – Optical fiber bundle – Imaging

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S117000, C385S902000, C600S162000, C600S109000, C600S167000

Reexamination Certificate

active

06363193

ABSTRACT:

BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
The present invention relates to endoscope optics comprising a proximal housing receiving an image-observation device and a tubular stem mounted distally on the housing, wherein an image transmitting means is mounted inside the stem and image-observation device is aligned inside the housing with the image transmitting means regarding image position and image center.
Such endoscope optics are known from the German patent document A1 197 42 454 and from the East German patent document B1 237 723.
An eccentric insert element to adjust an image-observation device relative to the image transmission means of an endoscope is known from the European patent document A1 0,058,020.
Endoscope optics of this kind comprise a distal tubular stem receiving an axial image transmitting means. This image transmitting means illustratively may be a lens (multiple lens elements), optical fibers, or the like.
The tubular stem is connected at its proximal end to a housing that receives an image-observation device or viewer. Typically, this device is an ocular or, for instance, a video camera.
The image transmitting means transmits an image from its distal end to its proximal end. The image generated at the proximal transmission end can be observed through the ocular and/or transmitted by a video camera to a monitor. Such a design, however, requires that the image-observation device or viewer be adjusted relative to the proximal end of the image transmitting means with respect to image position and image center in order to secure focus and the optimal viewing angle.
This adjustment must be undertaken for every endoscope optics. At the present time such adjustment is by means of adjusting screws controlling the position of the image-observation device in the three space coordinates. This kind of adjustment is fairly cumbersome and demands substantial time.
Accordingly, there is a need in the art for endoscope optics that can be adjusted in a simple manner.
SUMMARY OF THE INVENTION
The present invention is directed toward endoscope optics that are easily and simply adjusted.
In accordance with the present invention, a special insert element is used to adjust the image-observation device or viewer. The insert element comprises a contoured outer wall by means of which the insert element is connected, in a fixed manner, to the housing. The insert element has an axial borehole extending therethrough. The axial borehole receives the image-observation device in a play-free manner.
In further accordance with the present invention, the insert element is configured such that, in its installed position, the axial borehole is aligned with the image transmitting means. Accordingly, an image-observation device or viewer inserted in the borehole is adjusted relative to the optic axis of the image transmitting means.
In further accordance with the present invention, a test image-observing device displaceable in a defined system of coordinates is used in the manufacture of the insert element. The test device corresponds to or simulates the dimensions and optical properties of the actual optics. This test image-observing device is introduced into the insert element and, while being optically monitored, is moved into a position where it is adjusted relative to the proximal end of the image transmitting means. The adjustment is carried out with respect to the image center and image position, that is in relation to three coordinate axes. The relative coordinates within which the test image-observing device is adjusted in the particular endoscope housing may then be relayed to an automated system that will manufacture the special optics on the basis of the ascertained insert-element coordinates.
In further accordance with the present invention, there are a number of different ways to manufacture the insert element. The insert element may be a premanufactured part with an external contour already matching the housing and, then, only the borehole for image observation needs to be made in the insert element in the eccentric position possibly already ascertained. Alternatively, the borehole may have been prefabricated in the insert element and its position may be finished in the insert element by processing the insert element outer contour. Obviously as well, the outer-wall contour and borehole of the insert element may be manufactured one at a time in a blank.
As mentioned above, the insert element of the present invention is intended to adjust the image-observation device regarding image center and image position relative to the image transmitting means, or at least to make such adjustment substantially easier. Accordingly, the present invention includes an insert element which, during installation in the endoscope, can be affixed in a simple manner at a defined angular and axial position relative to the housing. The present invention also includes such an insert element wherein the continuous borehole shall be aligned with the optical axis of the image transmitting means. Only the image-observation device needs to be inserted into the borehole and affixed in a defined axial position and, as a result, the image position also shall have been set. The connection of the corresponding parts in their desired positions can be facilitated, for instance, by using markings at the insert element and at the image-observation device etc.
Preferably, however the insert element is constrained or required to be introduced at a given angular position and as far as an axial stop in the housing. Similarly, the image-observation device, once inserted, abuts against an axial stop in the borehole. During installation in the endoscope, the individual parts then must be nested in the only possible way and be soldered or bonded for permanent connection to each other. In this manner, installation is made much easier.
Provision may be made in this respect that the insert-element's outer wall contour shall be polarized such that the inert element can only be introduced into the housing in only one angular position. Illustratively, the insert element's outer wall or contour may include a protrusion or key which must be introduced in a slot or keyway of the housing running from the housing's upper edge. The opposite, closed end of the slot or keyway, at the same time, may constitute an axial stop representing the limit by which the insert element can be introduced for adjustment.
Moreover the inside wall of the housing may provide a stop. The insert element's outside wall contour and the housing's inside wall shall be so matched (for instance, by means of the cross-section of an irregular triangle) so that the insert element may be introduced only in a particular angular position as far as the housing's inside stop.
Preferably, another axial stop for the image-observation device may be provided in the inner insert element borehole, which, for instance, may be in the form of a stepped borehole. If during installation the image-observation device is advanced as far as the stop and if the insert element is introduced into the housing at the proper angular and axial position, then the image-observation device shall be automatically adjusted relative to the image position and center of the image transmitting means.
The insert element may be made, for instance, of plastic or aluminum. What is critical is that it be made of material which can be easily worked and which shall be resistant, especially to temperature, under the ordinary conditions of service of the endoscope optics. Furthermore, the insert element may be in the form of a sleeve or bush. Obviously, other geometries or shapes are also possible. The significant requirement is merely that the insert element comprises outer wall zones allowing defined affixation to the housing and that it also comprise an inner, continuous borehole to receive the image-observation device. The expression “borehole” herein denotes any kind of clearance axially passing through the insert element and receiving the image-observation device in

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Endoscope optics does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Endoscope optics, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Endoscope optics will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2883201

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.