Surgery – Endoscope – Having imaging and illumination means
Reexamination Certificate
1998-10-16
2002-09-17
Leubecker, John P. (Department: 3739)
Surgery
Endoscope
Having imaging and illumination means
C600S114000, C600S111000, C600S166000, C600S143000, C600S151000, C600S146000
Reexamination Certificate
active
06450950
ABSTRACT:
DESCRIPTION
1. Technical Field
The present invention relates to an endoscope having an endoscope shaft at the distal end of which is disposed a solid state image-recording system designed in the manner of lateral-view optics.
2. State of the Art
The surgical use of endoscopes has meanwhile proven to be quite successful and is in many cases, in addition to the conventional surgical techniques, a minimally invasive alternative procedure that has the advantage of being much less taxing to the patient and of shortening recovery time considerably. Apart from application in incorporal manipulation, respectively using suited endoscopic instruments for treatment of diseased parts of the body, endoscopes predominantly find use as a means of viewing and examining cavities in the human body.
In addition to the hitherto known, conventional rigid rod lens endoscopes, which only possess a single optical viewing channel and with which the surgeon receives only a two-dimensional image of the viewing area, there are known endoscopes that, using stereoscopic optical systems, permit reproduction of the surroundings of the surgery region including its spatial configuration.
The first considerations involving spatial viewing with the aid of endoscopes, the so-called stereo endoscopes, are based on the 1904 German patent DE 16 49 66, pertain to two separate, optical viewing paths which permit viewing an object opposite the distal end of the endoscope from two different directions. The proximal part of the endoscope is connected to a double eyepiece which simultaneously permits viewing the object with both eyes.
In addition to solely visual observation by the surgeon, for a number of reasons, it is desirable and even necessary in minimal-invasive endoscopic surgical techniques to realize the representation of the surgery area using video technology via a camera-monitor unit. Furthermore, the endoscopic procedure can be stored using video technology in such a manner that exact viewing is possible even following surgery. In this context, the described, conventional, optical stereo-endoscopic system requires that the two separate optical viewing systems each be connected at their proximal end to a camera system. These types of connection arrangements, however, in some instances demand very complex adjustments, therefore making handling the endoscope significantly more cumbersome. Moreover, the optical elements, respectively rod lenses in the endoscopes of the described, optical stereo systems possess a certain amount of mobility, which makes it impossible to prevent system-related blurriness at least not in adjusting the system.
As an alternative to conventional image transmission between the distal end and the proximal end of the endoscope with the aid of optical components (imaging lenses, optical fiber systems, i.a.), video image recorders, such as by way of illustration CCD-chips, are increasingly coming into use. For this reason, it has been often proposed to place in the image plane of the lenses disposed at the distal end of the endoscope an image recorder that is connected to a supply unit disposed at the proximal endoscope end by means of a transmission system instead of the conventional optical transmission systems. Concerning this, by way of example, reference is made to U.S. Pat. Nos. 4,235,447 and 4,261,344.
Therein solid state image-recording devices are widely employed, and of them the charge-coupled sensor types respectively CCD arrays seem to be the most suited.
Placing image-recording systems of this type at the distal end has the advantage, ie. that image transmission from the distal end to the proximal end of the endoscope can be carried out electronically, i.e., the signal transmission occurs via corresponding electric lines. This ensures more flexible endoscope guidance without optical distortions. Moreover, the considerable cost of the optical rod lenses is eliminated, permitting cheaper production of “electronic viewing endoscopes”.
U.S. Pat. Nos. 4,699,125 and 4,926,257 deal with such types of endoscopes at which distal end image-recording systems are provided which are essentially composed of a lens and a solid state image-recording element, preferably a CCD array.
Furthermore, comparable electronic endoscopes are described in the following printed publications: U.S. Pat. Nos. 5,050,584, and 4,989,586 as well as DE-OS 38 06 190.
In the mentioned endoscopes, a semiconductor image recorder is placed in the image plane of the lens disposed at the distal end in such a manner that the light-sensitive sensor area forms a 90° angle with the axis of the endoscope. Reduction of the cross section of the endoscope in the distal region, therefore, is limited at least due to the currently smallest possible dimensioning of solid state image-recording sensors.
As an alternative to the so-called straight-ahead view endoscopes like the ones described in the mentioned state of the art, the lateral-view endoscopes having surface sensors which are aligned parallel to the axis of the endoscope offer major minimization of the cross section of the endoscope. Devices of this type are described in U.S. Pat. Nos. 4,685,451, and 4,562,831 as well as the German A-document DE 32 33 924. Lateral-view endoscopes whose view is aligned perpendicular to the axis of the endoscope and therefore are also aligned for insertion of the endoscope are primarily for gastroenterological viewing and examinaton of the duodenum and further treatment in the gall duct, which is practically at a 90° angle to the duodenum. Although this construction reduces the cross section of the endoscope, the surgeon is unable to view the region into which the endoscope is inserted in the direction of movement.
Contrary to electronic endoscopes which only have a single image-recording system, the German A-document DE 38 06 190 describes electronic endoscopic devices each having two imaging devices which, using solid state image recorders, permit the surgeon to gain a spatial impression of the viewing region of the endoscope. Although placing the image-recording systems in pairs in the straight-ahead viewing direction at the distal end of the endoscope grants the surgeon a viewing region which lies immediately before the tip of the endoscope and therefore permits controlled movement of the endoscope into the inside of the body, due to the necessity of working with as small as possible endoscope diameters, the spacing of the image recorder systems, the so-called stereo base, selected cannot be very large. However, this diametrically opposes the possibility of increasing the spatial visual impression and therefore a large as possible stereo base. Moreover, while maintaining a small as possible endoscope diameter, solid state image sensors having very small dimensions and therefore worse resolution can be utilized in this arrangement.
DE 39 21 233.5 describes, among other things, in
FIG. 4
, an electronic stereo endoscope in straight-ahead viewing. For this purpose, two independently movable image-recording systems are pivoted out of the co-axial position laterally to the side of the endoscope in such a manner that the stereo base can be enlarged considerably. The laterally pivotable folding mechanism of both image-recording systems makes it possible to meet the requirement of having an as small as possible endoscope cross section. Although the proposed solution offers the surgeon a spatial impression of the viewing area in the straight-ahead direction, it does not allow further degrees of freedom. Moreover, the exact positioning of both recording systems in relation to each other is a source of problems.
SUMMARY OF THE INVENTION
The object of the present invention is to further improve an endoscope having an endoscope shaft at the end of which a solid state image-recording system is disposed which is designed in the manner of lateral-view optics in such a way that the most optimum possible spatial impression of a lateral field can be obtained with the smallest possible endoscope cross section. Furthermore, three-dimensional viewing should i
Karl Storz GmbH & Co. KG
Leubecker John P.
St. Onge Steward Johnston & Greens LLC
LandOfFree
Endoscope having stereo-lateral-view optics does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Endoscope having stereo-lateral-view optics, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Endoscope having stereo-lateral-view optics will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2871824