Endoscope apparatus for setting a scanning area

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S443000, C600S117000, C600S476000, C356S450000

Reexamination Certificate

active

06668185

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates in general to an endoscope apparatus, and in particular to an endoscope apparatus provided with a tomographic-image obtaining function for obtaining a tomographic image by scanning an examination area of a subject such as a human body with a signal-wave.
2. Description of the Related Art
There are in wide use in a variety of medical fields electron endoscope apparatuses for observing the interior of a body cavity of a patient, wherein an image formed of the light reflected from the interior of a body cavity of a patient upon the illumination thereof by an illuminating-light is obtained and displayed on a monitor or the like. Further, many endoscope apparatuses are provided with a forceps insertion port, and by inserting a probe therethrough into a body cavity of the patient, a biopsy on the tissue in the body cavity can be performed and treatment administered.
On the other hand, in recent years, efforts to develop a tomographic image obtaining apparatus for obtaining a tomographic image of a subject such as the human body have been advanced. Examples of known tomographic image obtaining apparatuses include: an optical tomographic image obtaining apparatus, which utilizes an optical interference caused by a low-coherence light; and an ultrasound tomographic image obtaining apparatus, which utilizes ultrasonic waves etc.
An OCT (Optical Coherence Tomography) apparatus, which obtains an optical tomographic image of an area of which a measurement is to be taken (hereinafter referred to simply as a measurement area) by measuring the intensity of an interference-light caused by a low-coherence light by heterodyne wave detection, is an example of an optical tomographic image obtaining apparatus; a detailed description thereof can be found in an article in “O Plus E” Vol. 21, No. 7, pp. 802-04, by Masamitsu Haruna.
According to the aforementioned OCT apparatus: the low-coherence light emitted from a light source formed of an SLD (Super Luminescent Diode) or the like, is separated into a signal-light and a reference-light; the frequency of the signal-light or the reference-light is slightly shifted by use of a Piezo element or the like; the measurement area is irradiated with the signal-light and interference is caused between the reference-light and the reflected-light reflected from a predetermined depth of said measurement portion; the signal strength of the interference signal produced due to said interference is measured by heterodyne wave detection; and the tomographic data is obtained; wherein, by very slightly moving a movable mirror or the like disposed above the optical path of the reference-light, causing the length of the optical path of the reference-light to change slightly, the length of the optical path of the reference-light and the length of the optical path of the signal-light can be made to be equal, and the data for a predetermined depth of the measurement portion can be obtained. Further, by moving the entry position of the signal-light in slight increments and repeating the measurement operation at each new point, the optical tomographic image of a predetermined scanning area can be obtained.
Because the early diagnosis of the depth of penetration of cancer or the like also becomes possible if an OCT apparatus such as that described above is utilized, efforts to develop methods of obtaining an optical tomographic image of the interior of a body cavity by guiding a signal-light and a reflected-light of the signal-light through an OCT probe that can be inserted into the forceps insertion port of the endoscope apparatus are being advanced. For example, according to an OCT apparatus described in an article in “Optics Letter”, Vol. 24, No. 19, pp. 1358-60, by Andrew M Rollin and Rujchai Ung-arunyawee: an OCT probe provided with an optical fiber and a mirror, which is disposed at the distal end of this optical fiber, for reflecting the signal-light at a right angle is inserted through the forceps insertion port of the endoscope apparatus to the interior of a body cavity of a patient; radial scanning is carried out by rotating the mirror disposed at the distal end of the optical fiber; and a radial optical tomographic image, which is an optical tomographic image showing a wall of the interior of the body cavity in round cross-sections, is displayed.
Further, the same as for the OCT apparatus, efforts to develop a probe-shaped apparatus capable of being inserted into the forceps insertion port of an endoscope apparatus for use in conjunction with an ultrasonic tomographic image obtaining apparatus such as that described in “Ultrasound Examination and Diagnostic Techniques”, Chapter 6, pp. 126-133 by Hiroaki Okawai, Toyo Press, and the like are being advanced, and the displaying of a tomographic image obtained by these apparatus, together with a reflectance image obtained by an endoscope, is in the process of being realized.
However, in order to employ the endoscope apparatus and probe for obtaining an optical tomographic image described above to obtain an optical tomographic image as described above, because it is necessary to first confirm by use of the endoscope the scanning area of which an optical tomographic image is to be obtained, and to manually guide the probe for obtaining an optical tomographic image to said scanning area. However, because this manual operation to guide the probe is troublesome, there is a problem in that the efficiency of the operation occurring when an optical tomographic image is to be obtained is reduced. Further, there is also a problem in that accurately positioning the distal end of the probe at a desired position is difficult.
SUMMARY OF THE INVENTION
The present invention has been developed in consideration of the circumstances described above, and it is a primary object of the present invention to provide an endoscope apparatus provided with an optical tomographic image obtaining function capable of efficiently obtaining an optical tomographic image of a desired scanning area.
The endoscope apparatus according the present invention comprises: a target-subject image obtaining means for projecting an illuminating-light onto the target subject, obtaining an image formed of the reflected-light reflected from the target subject upon the irradiation thereof with the illuminating-light, and forming a target-subject image based on said obtained image formed of said reflected-light; a target-subject image display means for displaying a target-subject image formed by said target-subject image obtaining means; and a tomographic image obtaining means for scanning a scanning area within the target subject with a signal-wave and obtaining a tomographic image of the scanned area; further comprising a position specifying means for specifying one or more desired points on a target-subject image displayed on the target-subject image display means, and a scanning-area setting means for setting a scanning area to be scanned with the signal-wave, based on the point(s) specified by the position specifying means.
Here, the referent of the term “illuminating-light” is not limited to white-light or other visible light, but also includes types of non-visible light such as infrared light and the like. Further, the expression “forming a target-subject image based on said obtained image formed of said reflected-light” can refer to forming a target-subject image by subjecting the image obtained by the image obtaining means to reflectance-image image processing, or forming a target-subject image by subjecting the image obtained by the image obtaining means to any of a number of specialized image-processing processes. As to the specialized image-processing processes, for cases in which the illuminating-light is anon-visible light such as infrared light, etc., an image processing process for converting the image obtained by the image obtaining means to a target-subject image formed of visible light, etc., can be used.
Here, so far as the referent of the phrase “scanning area” is an

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Endoscope apparatus for setting a scanning area does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Endoscope apparatus for setting a scanning area, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Endoscope apparatus for setting a scanning area will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3120428

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.