Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Arterial prosthesis – Stent structure
Reexamination Certificate
2000-01-14
2001-12-18
Milano, Michael J. (Department: 3738)
Prosthesis (i.e., artificial body members), parts thereof, or ai
Arterial prosthesis
Stent structure
C623S001160
Reexamination Certificate
active
06331190
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to endoluminal vascular prostheses, and, in one application, to self-expanding endoluminal vascular prostheses for use in the treatment of abdominal aortic aneurysms.
An abdominal aortic aneurysm is a sac caused by an abnormal dilation of the wall of the aorta, a major artery of the body, as it passes through the abdomen. The abdomen is that portion of the body which lies between the thorax and the pelvis. It contains a cavity, known as the abdominal cavity, separated by the diaphragm from the thoracic cavity and lined with a serous membrane, the peritoneum. The aorta is the main trunk, or artery, from which the systemic arterial system proceeds. It arises from the left ventricle of the heart, passes upward, bends over and passes down through the thorax and through the abdomen to about the level of the fourth lumbar vertebra, where it divides into the two common iliac arteries.
The aneurysm usually arises in the infrarenal portion of the diseased aorta, for example, below the kidneys. When left untreated, the aneurysm may eventually cause rupture of the sac with ensuing fatal hemorrhaging in a very short time. High mortality associated with the rupture led initially to transabdominal surgical repair of abdominal aortic aneurysms. Surgery involving the abdominal wall, however, is a major undertaking with associated high risks. There is considerable mortality and morbidity associated with this magnitude of surgical intervention, which in essence involves replacing the diseased and aneurysmal segment of blood vessel with a prosthetic device which typically is a synthetic tube, or graft, usually fabricated of Polyester, Urethane, P, DACRON®, TEFLON®, or other suitable material.
To perform the surgical procedure requires exposure of the aorta through an abdominal incision which can extend from the rib cage to the pubis. The aorta must be closed both above and below the aneurysm, so that the aneurysm can then be opened and the thrombus, or blood clot, and arteriosclerotic debris removed. Small arterial branches from the back wall of the aorta are tied off. The DACRON® tube, or graft, of approximately the same size of the normal aorta is sutured in place, thereby replacing the aneurysm. Blood flow is then reestablished through the graft. It is necessary to move the intestines in order to get to the back wall of the abdomen prior to clamping off the aorta.
If the surgery is performed prior to rupturing of the abdominal aortic aneurysm, the survival rate of treated patients is markedly higher than if the surgery is performed after the aneurysm ruptures, although the mortality rate is still quite high. If the surgery is performed prior to the aneurysm rupturing, the mortality rate is typically slightly less than 10%. Conventional surgery performed after the rupture of the aneurysm is significantly higher, one study reporting a mortality rate of 66.5%. Although abdominal aortic aneurysms can be detected from routine examinations, the patient does not experience any pain from the condition. Thus, if the patient is not receiving routine examinations, it is possible that the aneurysm will progress to the rupture stage, wherein the mortality rates are significantly higher.
Disadvantages associated with the conventional, prior art surgery, in addition to the high mortality rate include the extended recovery period associated with such surgery; difficulties in suturing the graft, or tube, to the aorta; the loss of the existing aorta wall and thrombosis to support and reinforce the graft; the unsuitability of the surgery for many patients having abdominal aortic aneurysms; and the problems associated with performing the surgery on an emergency basis after the aneurysm has ruptured. A patient can expect to spend from one to two weeks in the hospital after the surgery, a major portion of which is spent in the intensive care unit, and a convalescence period at home from two to three months, particularly if the patient has other illnesses such as heart, lung, liver, and/or kidney disease, in which case the hospital stay is also lengthened. Since the graft must be secured, or sutured, to the remaining portion of the aorta, it is many times difficult to perform the suturing step because the thrombosis present on the remaining portion of the aorta, and that remaining portion of the aorta wall may many times be friable, or easily crumbled.
Since many patients having abdominal aortic aneurysms have other chronic illnesses, such as heart, lung, liver, and/or kidney disease, coupled with the fact that many of these patients are older, the average age being approximately 67 years old, these patients are not ideal candidates for such major surgery.
More recently, a significantly less invasive clinical approach to aneurysm repair, known as endovascular grafting, has been developed. Parodi, et al. provide one of the first clinical descriptions of this therapy. Parodi, J. C., et al., “Transfemoral Intraluminal Graft Implantation for Abdominal Aortic Aneurysms,” 5 Annals of Vascular Surgery 491 (1991). Endovascular grafting involves the transluminal placement of a prosthetic arterial graft in the endoluminal position (within the lumen of the artery). By this method, the graft is attached to the internal surface of an arterial wall by means of attachment devices (expandable stents), typically one above the aneurysm and a second stent below the aneurysm.
Stents permit fixation of a graft to the internal surface of an arterial wall without sewing or an open surgical procedure. Expansion of radially expandable stents is conventionally accomplished by dilating a balloon at the distal end of a balloon catheter. In U.S. Pat. No. 4,776,337, for example, Palmaz describes a balloon-expandable stent for endovascular treatments. Also known are self-expanding stents, such as described in U.S. Pat. No. 4,655,771 to Wallsten.
Notwithstanding the foregoing, there remains a need for a transluminally implantable endovascular prosthesis, such as for spanning an abdominal aortic aneurysm. Preferably, the tubular prosthesis can be self expanded at the site to treat the abdominal aortic aneurysm.
SUMMARY OF THE INVENTION
There is provided in accordance with one aspect of the present invention an endoluminal prosthesis. The endoluminal prosthesis comprises a tubular wire support having a proximal end, a distal end and central lumen extending therethrough. The wire support comprises at least a first and a second axially adjacent tubular segments, joined by a connector extending therebetween. The first and second segments and the connector are formed from a single length of wire.
In one embodiment, the wire in each segment comprises a series of proximal bends, a series of distal bends, and a series of wall (strut) segments connecting the proximal bends and distal bends to form a tubular segment wall. Preferably, at least one proximal bend on a first segment is connected to at least one corresponding distal bend on a second segment. The connection may be provided by a metal link, a suture, or other connection means known in the art.
Preferably, the endoluminal prosthesis further comprises a polymeric layer such as a tubular PTFE sleeve, on the support.
In accordance with another aspect of the present invention, there is provided a method of making an endoluminal prosthesis. The method comprises the steps of providing a length of wire, and forming the wire into two or more zig zag sections, each zig zag section connected by a link. The formed wire is thereafter rolled about an axis to produce a series of tubular elements positioned along the axis such that each tubular element is connected to the adjacent tubular element by a link. Preferably, the method further comprises the step of positioning a tubular polymeric sleeve concentrically on at least a portion of the endoluminal prosthesis.
In accordance with another aspect of the present invention, there is provided a multizone endoluminal prosthesis. The multizone prosthesis comprises a tubular wire support having a proximal end,
Henson Michael R.
Hoffmann Gerard von
Shokoohi Mehrdad M.
Endologix, Inc.
Knobbe Martens Olson & Bear LLP
Milano Michael J.
LandOfFree
Endoluminal vascular prosthesis does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Endoluminal vascular prosthesis, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Endoluminal vascular prosthesis will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2597899