Endoluminal cardiac and venous valve prostheses and methods...

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Arterial prosthesis – Including valve

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C623S001260

Reexamination Certificate

active

06652578

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to implantable prosthetic cardiac and venous valves. More particularly, the present invention pertains to prosthetic cardiac and venous valve implants which are capable of being delivered using endovascular techniques and being implanted at an intracardiac or intravenous site without the need for anatomic valve removal. The prosthetic valves of the present invention are well-suited for cardiac delivery via a femoral or subclavian artery approach using a delivery catheter, and, depending upon the specific configuration selected, may be deployed within the heart to repair valve defects or disease or septal defects or disease. According to one embodiment of the invention, there is provided a chamber-to-vessel (CV) configuration which is particularly well-suited as an aortic valve prosthesis to facilitate blood flow from the left ventricle to the aorta. In a second embodiment, there is provided a prosthetic valve in a chamber-to-chamber (CC) configuration which is particularly well-adapted for mitral valve replacement or repair of septal defects. Finally, a third embodiment is provided in a vessel-to-vessel (VV) configuration, which is well suited for venous valve exclusion and replacement.
Common to each of the CV, CC and VV embodiments of the present invention are a stent support member, a graft member which covers at least a portion of either or both the lumenal and ablumenal surfaces of the stent, valve flaps which are formed either by biological xenograft valves, synthetic valves formed from either the same material or a different material as the graft member, the valve flaps being coupled to the stent in a manner which biases the valve flaps so they close upon a zero pressure differential across the valve region.
It is important for the present invention to provide orientational definitions. For purposes of the present invention, references to positional aspects of the present invention will be defined relative to the directional flow vector of blood flow through the implantable device. Thus, the term “proximal” is intended to mean on the inflow or upstream flow side of the device, while “distal” is intended to mean on the outflow or downstream flow side of the device. With respect to the catheter delivery system described herein, the term “proximal” is intended to mean toward the operator end of the catheter, while the term “distal” is intended to mean toward the terminal end or device-carrying end of the catheter.
SUMMARY OF PRIOR ART
The prior art discloses certain common device segments inherently required by a percutaneous prosthetic valve: an expandable stent segment, an anchoring segment and a flow-regulation segment.
Prior art percutaneous prosthetic valve devices include the Dobben valve, U.S. Pat. No. 4,994,077, the Vince valve, U.S. Pat. No. 5,163,953, the Teitelbaum valve, U.S. Pat. No. 5,332,402, the Stevens valve, U.S. Pat. No. 5,370,685, the Pavcnik valve, U.S. Pat. No. 5,397,351, the Taheri valve, U.S. Pat. No. 5,824,064, the Anderson valves, U.S. Pat. Nos.
5,411,552 & 5,840,081
, the Jayaraman valve, U.S. Pat. No. 5,855,597, the Besseler valve, U.S. Pat. No. 5,855,601, the Khosravi valve, U.S. Pat. No. 5,925,063, the Zadano-Azizi valve, U.S. Pat. No. 5,954,766, and the Leonhardt valve, U.S. Pat. No. 5,957,949. Each of these pre-existing stent valve designs has certain disadvantages which are resolved by the present invention.
The Dobben valve has a disk shaped flap threaded on a wire bent like a safety pin to engage the vessel wall and anchor the valve. A second embodiment uses a stent of a cylindrical or crown shape that is made by bending wire into a zigzag shape to anchor the device and attach the flow regulator flap. The device presents significant hemodynamic, delivery, fatigue and stability disadvantages.
The Vince valve has a stent comprised of a toroidal body formed of a flexible coil of wire and a flow-regulation mechanism consisting of a flap of biologic material. Numerous longitudinal extensions within the stent are provided as attachment posts to mount the flow-regulation mechanism. The device requires balloon expansion to deliver to the body orifice. The main shortcoming of this design is delivery profile. Specifically, the device and method put forth will require a 20+ French size catheter (approximately 9 French sizes to accommodate the balloon and 14+ French sizes to accommodate the compressed device) making the device clinically ineffective as a minimally invasive technique. Additionally, the device does not adequately address hemodynamic, stability and anchoring concerns.
The Teitelbaum valve is made of shape memory nitinol and consists of two components. The first component is stent-like and comprised of a meshwork or braiding of nitinol wire similar to that described by Wallsten, U.S. Pat. No. 4,655,771, with trumpet like distal a proximal flares. The purpose of the stent is to maintain a semi-ridged patent channel through the diseased cardiac valve after initial balloon dilation. The flared ends are intended to maintain the position of the stent component across the valve thereby anchoring the device. Embodiments for the flow-regulation mechanism include a sliding obturator and a caged ball both which are delivered secondary to the stent portion. The disadvantages of the device are the flow regulators reduce the effective valve orifice and generate sub-optimal hemodynamic characteristics; fatigue concerns arise from the separate nature of the stent and flow-regulation components; the high metal and exposed metal content raises thrombogenesis, valvular stenosis and chronic anticoagulation concerns; and the separate delivery requirements (although addressing the need for small delivery profile) in addition to any initial valvuloplasty performed increases the time, costs, risks, difficulty and trauma associated with the percutaneous procedure.
The Pavcnik valve is a self-expanding percutaneous device comprised of a poppet, a stent and a restraining element. The valve stent has barbed means to anchor to the internal passageway. The device includes a self-expanding stent of a zigzag configuration in conjunction with a cage mechanism comprised of a multiplicity of crisscrossed wires and a valve seat. The disadvantages of the device include large delivery profile, reduced effective valvular orifice, possible perivalvular leakage, trauma-inducing turbulent flow generated by the cage occlusive apparatus and valve seat, thrombogenesis, valvular stenosis, chronic anticoagulation, problematic physiological and procedural concerns due to the barb anchors and complex delivery procedure that includes inflation of occlusive member after initial implantation.
Stevens discloses a percutaneous valve replacement system for the endovascular removal of a malfunctioning valve followed by replacement with a prosthetic valve. The valve replacement system may include a prosthetic valve device comprised of a stent and cusps for flow-regulation such as a fixed porcine aortic valve, a valve introducer, an intraluminal procedure device, a procedure device capsule and a tissue cutter. The devices disclosed indicate a long and complex procedure requiring large diameter catheters. The valve device disclosed will require a large delivery catheter and does not address the key mechanisms required of a functioning valve. Additionally, the device requires intraluminal-securing means such as suturing to anchor the device at the desired location.
The Taheri valve describes an aortic valve replacement combined with an aortic arch graft. The devices and percutaneous methods described require puncture of the chest cavity.
Anderson has disclosed various balloon expandable percutaneous prosthetic valves. The latest discloses a valve prosthesis comprised of a stent made from an expandable cylindrical structure made of several spaced apices and an elastically collapsible valve mounted to the stent with the commissural points of the valve mounted to the apices. The device is placed at the desired location

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Endoluminal cardiac and venous valve prostheses and methods... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Endoluminal cardiac and venous valve prostheses and methods..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Endoluminal cardiac and venous valve prostheses and methods... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3143279

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.