Endolumenal prosthesis and method of use in bifurcation...

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Arterial prosthesis – Bifurcated

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C623S001110, C623S001270

Reexamination Certificate

active

06520988

ABSTRACT:

FIELD OF THE INVENTION
The present invention is a surgical device. More particularly, it is an endolumenal prosthesis which is adapted for use in bifurcated regions of body lumens. Still more particularly, it is an endovascular stent which is adapted to provide radial support to a main lumen of an endolumenal bifurcation and which includes a dilator and access device which are preloaded within a preselected side port along the endolumenal prosthesis prior to delivery of the endolumenal prosthesis to the bifurcation region in order to facilitate delivery of a second endolumenal prosthesis through the side port and into a side branch extending from the main lumen at the bifurcation region.
BACKGROUND
Conventional Stents
A wide range of medical treatments have been previously developed using “endolumenal prostheses,” which terms are herein intended to mean medical devices which are adapted for temporary or permanent implantation within a body lumen. Examples of lumens in which endolumenal prostheses may be implanted include, without limitation: arteries, such as for example those located within the coronary, mesentery, peripheral, or cerebral vasculature; veins; gastrointestinal tract; and fallopian tubes. Various different types of endolumenal prosthesis have also been developed, each providing a uniquely beneficial structure to modify the mechanics of the targeted lumenal wall. For example, various grafts, stents, and combination stent-graft prostheses have been previously disclosed for implantation within body lumen. More specifically regarding stents or stent-grafts, various designs of these prostheses have been previously disclosed for providing artificial radial support to the wall tissue which forms the various lumens within the body, and usually more specifically within the blood vessels of the body.
One more frequently disclosed “stenting” treatment beneficially provides radial support to coronary, peripheral, mesentery or cerebral arteries in order to prevent abrupt reclosure subsequent to recanalization of stenosed vessels, such as by balloon angioplasty or atherectomy (mechanical dilation of stenosed vessel by radial balloon expansion or direct removal of stenotic plaque, respectively). In general, the angioplasty or atherectomy-type recanalization methods reestablish flow to reperfuse tissues downstream of an initial stenosis. Subsequent to such recanalization, however, the dilated lumen of the stenosis site may reocclude, such as by abrupt reclosure (usually due to acute thrombosis or dissected vessel wall flaps transecting the vessel lumen), restenosis (generally considered as a longer term “scarring”-type response to wall injury during recanalization procedures), or spasm (generally considered a response to overdilatation of a vessel and in some aspects may be a form of abrupt reclosure). The implantation of stents to mechanically support the vessel walls at such stenosis sites, either during balloon angioplasty or subsequent to recanalization, is believed to deter the reocclusion of such recanalized vessels which may otherwise occur due to one or more of these phenomena. Various categories of stents have therefore arisen for the primary purpose of providing endolumenal radial support primarily within arteries adjunctively to recanalization.
One criteria by which various stent designs may be generally categorized draws from the structural design which forms a particular stent's tubular wall. Various “tubular wall” types of stents according to this criteria include, without limitation: wire mesh stents; coiled stents; tubular slotted stents; and integrated ring stents. In general, each of these “tubular wall” categories of stents includes a network of integrated support members which combine to form a tubular stent wall that defines a longitudinal passageway. The structural integrity of the integrated support members provides radial rigidity against physiological collapse forces at the vessel wall, whereas the longitudinal passageway through the prosthesis allows for perfused flow through the stented region.
Another criteria by which various stent “types” may be categorized relates to the delivery method by which a particular stent is adapted for implantation within a lumen or vessel. In general, stents are delivered in a radially collapsed condition to the stenting site via known percutaneous translumenal procedures. Once positioned at the stenting site, the stent is adjusted to a radially expanded condition which is adapted to radially engage the interior surface of the wall tissue which defines the lumen, such as a vessel wall in an arterial stenting procedure. According to this generally applicable delivery mode, various stent categories which may be stratified by more particular delivery methods include, without limitation: “self expanding” stents, which generally expand under their own force once delivered to the desired stenting site; and “balloon expandable” stents, which generally expand under mechanical strain from an inflating balloon at the stenting site.
One specific example, within the previously disclosed “self-expanding” stenst is adjustable from the radially collapsed condition to the radially expanded condition by removing a radial constraining member once delivered to the stenting site. This type of self-expanding stent is adapted to recover from an elastically deformed state, when radially confined by the constraining member in the radially collapsed condition, to a resting or recovered state in the radially expanded condition, when radially unconstrained. Further detailed examples of known constraining members for use in delivery systems for such known “self-expanding” stents include either radially confining sheaths or releasable tethers which are releasably coupled to the stent wall when in the radially collapsed condition. Another more specific example of a previously disclosed “self-expanding” stent is adjustable from the radially collapsed condition to the radially expanded condition by heating the stent once delivered to the stenting site, thereby inducing a heat-memory recovery of the stent to the radially expanded condition.
Further to the previously disclosed “balloon expandable” stent variations, known stents according to this type are generally crimped or otherwise held in the radially collapsed condition over an exterior surface of an expandable balloon and are adjusted to the radially expanded condition by inflating the balloon. Further detail of previously known “balloon expandable” stent designs includes those which are provided “pre-loaded” onto a balloon catheter, and also those which may be provided separately to a physician user who may crimp the stent onto a balloon immediately prior to delivery in vivo.
Further more specific examples of stents according to the various “tubular wall” and “delivery method” categories just summarized above are disclosed variously throughout the following references: U.S. Pat. No. 4,580,568 to Gianturco; U.S. Pat. No. 4,733,665 to Palmaz; U.S. Pat. No. 4,739,762 to Palmaz; U.S. Pat. No. 4,776,337 to Palmaz; U.S. Pat. No. 4,830,003 to Wolff et al.; U.S. Pat. No. 4,913,141 to Hillstead; U.S. Pat. No. 4,969,458 to Wiktor; U.S. Pat. No. 5,019,090 to Pinchuk; and in U.S. Pat. No. 5,292,331 to Boneau. The disclosures of these references are herein incorporated by their entirety by reference thereto.
Conventional Bifurcation Stenting Techniques
Stenoses within bifurcation regions of lumens, more particularly of arterial lumens, have long presented a particular challenge to conventional recanalization techniques, and more particularly to conventional stenting techniques. For example, adjunctively to implanting a stent within a main vessel, which includes a side-branch vessel arising from the main vessel wall along the implanted stent's length, additional stenting of the side-branch vessel may also be required in order to maintain patency of that vessel. The various clinical indications or concerns which are believed to give rise to the desirability of such bifurcation stenting include: mecha

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Endolumenal prosthesis and method of use in bifurcation... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Endolumenal prosthesis and method of use in bifurcation..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Endolumenal prosthesis and method of use in bifurcation... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3171422

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.