Surgery – Endoscope – With guide means for body insertion
Reexamination Certificate
1999-04-30
2001-08-21
Dvorak, Linda C. M. (Department: 3739)
Surgery
Endoscope
With guide means for body insertion
C600S116000, C600S121000, C600S124000
Reexamination Certificate
active
06277066
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a device for positioning a medical imaging instrument. More particularly, the invention is directed to an apparatus and method for controlling the distance of an imaging sensor from the tissue surface within a cavity of a patient.
BACKGROUND
Imaging instruments, such as ultrasound probes, have revolutionized the manner in which many important medical procedures are performed. These medical instruments utilize substantially non-invasive imaging techniques to explore and assess the condition of human tissue. As a result of these non-invasive imaging techniques, diagnostic and therapeutic protocols have been developed that allow many highly successful and safe procedures to be performed with a minimum of disturbance to patients.
Ultrasound and other imaging techniques have received widespread acceptance as useful diagnostic tools. The ultrasound image is created by emission of very high frequency sound waves from a transducer scanning the subject area. The sound waves are reflected back to the transducer, and corresponding data is transmitted to a processing device. The processing device analyzes the data and composes a picture for display on a monitoring screen. Ultrasound probes, and other imaging instruments, may be used in this manner for a variety of purposes, such as identifying the existence, location, and size of tumors, as well as the existence of other medical conditions, including the atrophy or hypertrophy of bodily organs.
Most ultrasound sensors perform best in resolving tissue within a particular area of its scan path and at a particular distance from the imaging probe. For example, an optimal area for image resolution may be 1 or more inches away from the image sensor surface. As a result, tissue very near the image sensor surface may not be viewable to an extent desired by the operating physician.
Increasingly, imaging instruments have been used to explore cavities of humans and animals in order to conduct routine examinations, as well as to identify evidence of illness. These endocavities, such as those associated with the human digestive and reproductive tracts, can be the location of benign and malignant tumors. Using ultrasound, these tumors can be located and assessed. However, because ultrasound probes usually perform best at a point distant from the subject tissue, endocavities can be difficult to properly examine because it can be difficult to move the probe closer or farther away from a target that is adjacent to the probe. This is an especially significant issue when examining thin tissue, such as the walls of the colon. If the thin tissue is not placed in the proper position, satisfactory imaging results are difficult to obtain.
To remedy the problem of tissue positioning, a standoff device can be placed between the image sensor and the patient's tissue to move the image sensor away from the desired scan area, placing the tissue in an optimal scanning window. Unfortunately, existing standoff devices are difficult to use, uncomfortable for patients, and do not provide adequate flexibility and control over the standoff position. Therefore, a need exists for an improved standoff device.
SUMMARY OF THE INVENTION
The present invention is directed to a directionally expandable standoff device for use with an imaging instrument In certain embodiments the standoff device includes an elastic sheath configured for placement over a probe of an imaging instrument. The standoff device also includes a substantially rigid cover configured for placement over the elastic sheath, the cover containing an opening exposing a portion of the elastic sheath. The exposed portion of the elastic sheath is configured to expand through the opening in the cover upon insertion of a fluid into the elastic sheath. This expansion of the elastic sheath moves tissue proximate the sheath, and allows precise placement of the tissue during imaging analysis. The expansion of the elastic sheath also allows for slight movement of tissue masses in order to adjust their position within the imaging field of the imaging instrument.
In certain embodiments, the exposed portion of the elastic sheath is configured and arranged such that it has an unexpanded state substantially flush with the cover of the standoff device. The exposed portion of the elastic sheath is confined to an arc of less than or equal to 180 degrees around the center of the imaging probe in certain embodiments, and to an arc of less than or equal to 90 degrees around the imaging probe in other embodiments.
In certain implementations of the invention the opening in the cover is between approximately 0.5 and 5.0 inches long, and between 0.5 and 1.5 inches wide. The standoff device may also include a conduit in fluid communication with the elastic sheath, the conduit configured and arranged to provide fluid to expand the exposed portion of the elastic sheath.
The invention is also directed to a method of examining a patient using an imaging instrument. The method includes providing an imaging instrument and a directionally expandable standoff device. The standoff device includes an elastic sheath configured for placement over the probe of an imaging instrument and a substantially rigid cover configured for placement over the expandable sheath, the cover containing an opening exposing a portion of the elastic sheath. The standoff device is expanded so as to properly position the imaging instrument relative to tissue of a patient, thereby improving imaging results.
The above summary of the present invention is not intended to describe each discussed embodiment of the present invention. This is the purpose of the figures and the detailed description which follow.
REFERENCES:
patent: 4224929 (1980-09-01), Furihata
patent: 4603701 (1986-08-01), Chen
patent: 5105800 (1992-04-01), Takahashi et al.
patent: 5331947 (1994-07-01), Shturman
patent: 5634464 (1997-06-01), Jang et al.
CIVCO Medical Instruments Inc.
Dvorak Linda C. M.
Merchant & Gould P.C.
Ram Jocelyn
LandOfFree
Endocavity imaging sensor positioning apparatus and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Endocavity imaging sensor positioning apparatus and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Endocavity imaging sensor positioning apparatus and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2454186