Bearings – Rotary bearing – Antifriction bearing
Reexamination Certificate
2000-08-24
2002-03-19
Footland, Lenard A. (Department: 3682)
Bearings
Rotary bearing
Antifriction bearing
Reexamination Certificate
active
06357927
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to bearing mounts. More particularly, the present invention relates to a simplified adjustment assembly which interacts between a bearing assembly and the housing within which the bearing assembly is supported. Specifically, the present invention relates to an assembly by which to effect incremental adjustments to the axial end play of, or the preload on, the outer race of a bearing assembly, either alone or in a set.
2. Description of Related Art
Even with journal arrangements for which thrust loading is not reasonably anticipated, and within which cylindrical bearings are appropriate to support radial loading, it is customary to utilize some structure by which to effect axial retention of the bearings that rotatably support a shaft, or the like. This is done so that should the shaft, even unexpectedly, apply a reasonable thrust load on the bearing, the bearing will remain seated within the housing. When the environment in which the journal arrangement is employed is such that both radial and thrust loading would be expected, one would generally consider the use of tapered bearing sets inasmuch as they effect excellent rotational support for a shaft subjected to such loading and without impairing rotation of the shaft. However, other alternatives are often employed because of the difficulties heretofore experienced in adjusting the axial end play of, or the preload on, the races which support the rollers in a tapered bearing assembly.
Thrust loading is transferred by the individual bearing assemblies in a tapered bearing set from the shaft to the journal box or housing, within which the bearings of the bearing set are supported. Generally, the inner race of each bearing assembly abuts a shoulder presented from the rotatable shaft or differential case. The outer race similarly abuts an opposed shoulder presented from the housing in which the bearing is supported. Obviously, the structure, which presents the opposed shoulders between which the bearing set is captured, must be such as to permit assembly of the shaft and both bearing assemblies into the housing. Moreover, even if opposed, rigid shoulders could be provided, such an arrangement would not allow for any variation or adjustment in the end play of, or the preloading applied to, the bearing set.
To facilitate assembly, some arrangements (such as those wherein the hub of an axially elongated shaft is supported by inboard and outboard bearing assemblies) utilize the aforesaid configuration for the inboard bearing—i.e., the inner race abuts a shoulder on the shaft and the outer race abuts a shoulder on the housing—but reverses the arrangement for the outboard bearing. That is, the outer race of the outboard bearing would abut a shoulder on the housing and the inner race would abut a shoulder means presented from the shaft. In this latter arrangement, adjustment of the preload and the end play has been achieved by using a nut threaded onto the shaft to drive a washer which serves as the shoulder means. In this configuration, the washer abuts the inner race and the nut can be tightened or loosened to move the washer and thereby adjust the preload and end play.
It is, however, difficult to achieve and maintain incremental adjustments of the small magnitude desired by using a nut threaded onto the end of the shaft. Certainly, such nuts are often crenellated to permit a safety wire or clip to be inserted through a diametric bore in the shaft in order to secure the selected position of the nut. However, the magnitude of the adjustments permitted by the aforesaid arrangement is limited to a function of the thread pitch and the number of crenellations as well as their angular disposition.
To accomplish incremental adjustments of a small or fine magnitude, a variety of arrangements have been developed which utilize shims interposed between one race of the bearing set and a bearing retainer. The shims utilized by such prior art assemblies are available in a plurality of dimensions so that the selection of appropriately sized shims will generally achieve the desired end play or preloading. However, the installation of a typical shim assembly generally requires a rather complicated series of steps. For example, one must normally measure the gap between one race of the bearing assembly and the bearing retainer to determine the size of the shim or shims required, and the shim or a combination of shims must then be selected. The selected shim(s) must then be appropriately inserted between the selected race of the bearing assembly and the bearing retainer. The installation is not concluded until a final measurement has been made to verify that the proper end play and preloading has been achieved.
The installation of prior known shim assemblies is, therefore, a relatively complicated process for which considerable expertise is required, and for which shims must be available in a wide variety of sizes in order for the desired end play or preloading to be effected.
In the field of differential assemblies, the assembly process often requires the carrier to be spread or stretched to facilitate assembly of differential components. The process and required spreader tool substantially increases the assembly time and cost.
Another form of a prior art bearing adjusting assembly employs opposed cams or ramps. The use of cams or ramps allows for a wide range in the amount of end play or preloading adjustment available and reduces the number of components which must be stocked. However, the locking means heretofore employed in conjunction with cams or ramps to secure the selected adjustment, generally comprises a plurality of bolts that are receivable within threaded bores. The need to provide threaded bores, however, creates a problem in that while the aforementioned cams or ramps will allow for an infinite array of settings, discrete placement of threaded bores to receive the bolts severely restricts usage of the array to that permitted by the particular placement of the bores.
SUMMARY OF THE INVENTION
It is, therefore, a primary object of the present invention to provide a simplified assembly by which to effect incremental adjustments to the end play of, and the preload on, a bearing set.
It is another object of the present invention to provide an adjusting assembly, as above, which incorporates a relatively uncomplicated arrangement by which to secure the selected end play and preload, by moving the bearing race upon which the adjusting assembly acts through dimensional increments.
It is a further object of the present invention to provide an adjusting assembly, as above, which does not require stocking a plurality of different size shims.
It is still another object of the present invention to provide an adjusting assembly, as above, which assures that the selected end play and preloading will be maintained, and which can thereafter be further adjusted as necessary or desired, with relative ease.
It is yet another object of the present invention to provide an adjusting assembly which permits the desired preload for a bearing set to be exceeded in order to seat the bearing set correctly.
These and other objects of the invention, as well as the advantages thereof over existing and prior art forms which will be apparent in view of the following detailed specification, are accomplished by means hereinafter described and claimed.
In general, an assembly embodying the concepts of the present invention allows an engineer, mechanic, or the entity repairing or originally assembling a bearing set within a support housing, to effect incremental adjustments to the preloading on the bearing set.
In a preferred embodiment of the invention the adjusting assembly utilizes an internally threaded bearing cup body and an externally threaded adjusting ring. The bearing cup body abuts the outer race of the bearing and the adjusting ring is threaded onto the bearing cup body and abuts a fixed or stationary housing surface. The adjusting ring is rotated to adjust bearing preload and pro
Doyle Gary Peter
Myers Leslie Dean
Footland Lenard A.
Liniak Berenato Longacre & White
Spicer Technology Inc.
LandOfFree
End play preload adjusting assembly for bearings does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with End play preload adjusting assembly for bearings, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and End play preload adjusting assembly for bearings will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2828442